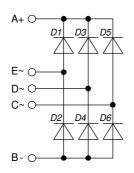

Standard Rectifier Module

3~ Rectifier Bridge


Part number VUO160-14NO7

3~ Rectifier				
$V_{\rm RRM}$	=	1400 V		
\mathbf{I}_{DAV}	=	175 A		
I _{FSM}	=	1800 A		

E72873

20190201b

Features / Advantages:

- Package with DCB ceramic
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- · Very low leakage current

Applications:

- Diode for main rectification
- For three phase bridge configurations
- Supplies for DC power equipment
- Input rectifiers for PWM inverter
- Battery DC power supplies
- Field supply for DC motors

Package: PWS-E

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- · Easy to mount with two screws
- Base plate: Copper
- internally DCB isolated Advanced power cycling

Recommended replacement: VUO160-16NO7

Terms and Conditions of Usage

The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application and assertion and application and point and on one point in a valid application of your product data sheet or which concerns the specific application of your product, please contact your local sales office.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact your local sales office. Should you intend to use the product in aviation, in health or life endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;
the conclusion of quality agreements;

- to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, conditions and dimensions.

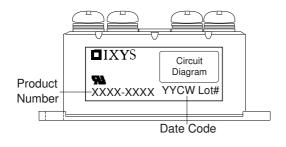
LIXYS

VUO160-14NO7

Phase out

Rectifie	r				Rating	S	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	king voltage	$T_{VJ} = 25^{\circ}C$			1500	V
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1400	V
I _R	reverse current	$V_{\rm R}$ = 1400 V	$T_{VJ} = 25^{\circ}C$			200	μA
		$V_{R} = 1400 V$	$T_{vJ} = 150^{\circ}C$			2	mA
V _F	forward voltage drop	I _F = 60 A	$T_{VJ} = 25^{\circ}C$			1.10	V
		I _F = 180 A				1.40	V
		$I_{F} = 60 \text{ A}$	T _{vJ} = 125 °C			1.00	V
		$I_{F} = 180 \text{ A}$				1.39	V
DAV	bridge output current	T _c = 110°C	$T_{vJ} = 150 ^{\circ}\text{C}$			175	Α
		rectangular d = ⅓					
V _{F0}	threshold voltage		T _{vJ} = 150°C			0.77	V
r _F	slope resistance } for power	loss calculation only				3.4	mΩ
\mathbf{R}_{thJC}	thermal resistance junction to ca	ase				0.5	K/W
R _{thCH}	thermal resistance case to heats	sink			0.2		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			250	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1.80	kA
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			1.95	kA
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			1.53	kA
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			1.65	kA
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{vJ} = 45^{\circ}C$			16.2	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			15.7	kA²s
		t = 10 ms; (50 Hz), sine	$T_{vJ} = 150$ °C			11.7	kA²s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			11.3	kA²s
C	junction capacitance	V_{R} = 400 V; f = 1 MHz	$T_{vJ} = 25^{\circ}C$		35		pF
-				+			· · · · · · · · · · · · · · · · · · ·

PHASE OUT

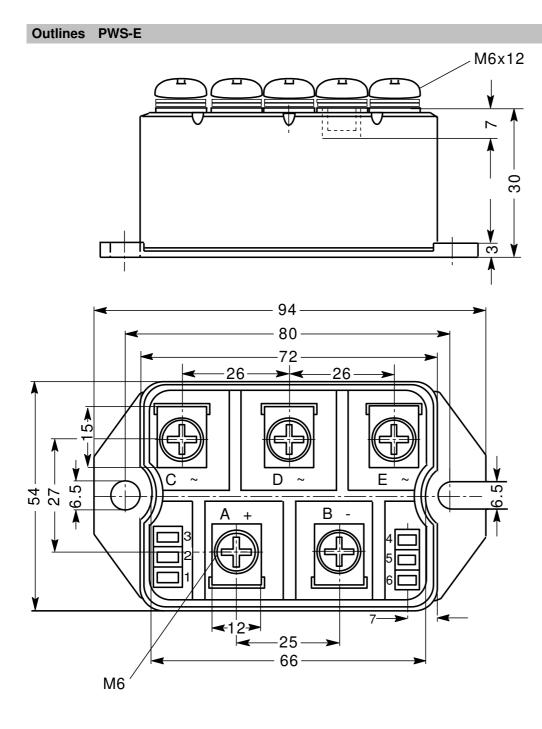

IXYS reserves the right to change limits, conditions and dimensions.

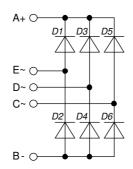
LIXYS

VUO160-14NO7

Phase out

Package PWS-E			Ratings				
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				200	А
\mathbf{T}_{v_J}	virtual junction temperature			-40		150	°C
T _{op}	operation temperature			-40		125	°C
T _{stg}	storage temperature			-40		125	°C
Weight					284		g
M _D	mounting torque			4.25		5.75	Nm
M _T	terminal torque			4.25		5.75	Nm
d _{Spp/App}	creepage distance on surface striking distance thro		terminal to terminal	12.0			mm
d _{Spb/Apb}		instance through an	terminal to backside	26.0			mm
V	isolation voltage	t = 1 second	50/60 Hz, BMS: lisor ≤ 1 mA	3000			V
	t = 1 m	t = 1 minute		2500			V


0	rdering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
S	standard	VUO160-14NO7	VUO160-14NO7	Box	5	462454


Equiv	alent Circuits for	Simulation	* on die level	T _{vJ} = 150 °C
	$-R_{0}-$	Rectifier		
$V_{0 max}$	threshold voltage	0.77		V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *	2.2		mΩ

20190201b

VUO160-14NO7

Phase out

VUO160-14NO7

Phase out

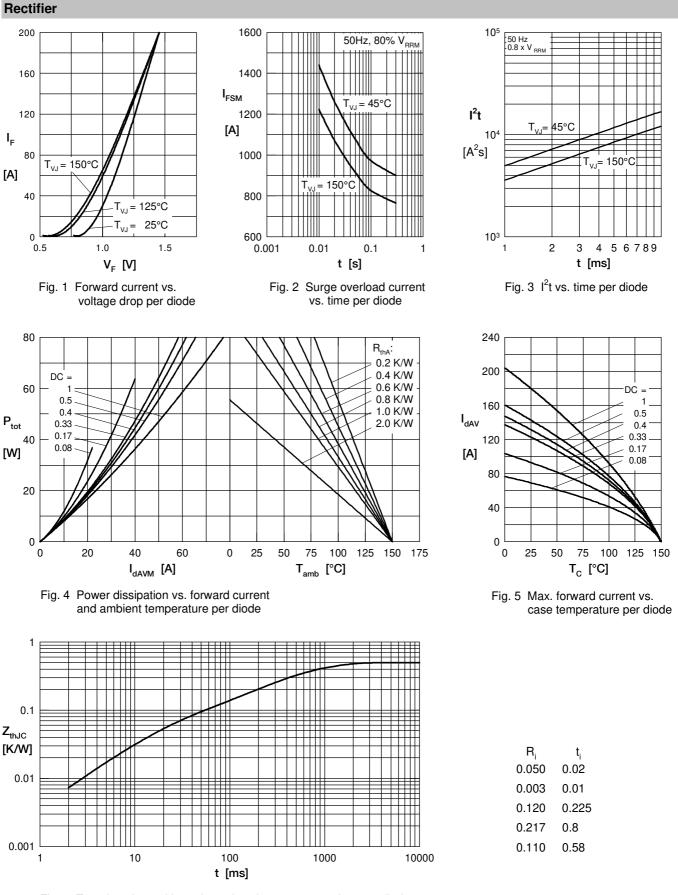


Fig. 6 Transient thermal impedance junction to case vs. time per diode

IXYS reserves the right to change limits, conditions and dimensions.