

ATtiny204/404

ATtiny204/404 Silicon Errata and Data Sheet Clarification

The ATtiny204/404 devices you have received conform functionally to the current device data sheet (www.microchip.com/DS50002687), except for the anomalies described in this document. The errata described in this document will likely be addressed in future revisions of the ATtiny204/404 devices.

Notes:

- This document summarizes all the silicon errata issues from all revisions of silicon, previous as well as current
- Refer to the Device/Revision ID section in the current device data sheet (www.microchip.com/DS50002687) for
 more detailed information on Device Identification and Revision IDs for your specific device, or contact your local
 Microchip sales office for assistance

1. Silicon Issue Summary

Legend

- Erratum is not applicable.

X Erratum is applicable.

Peripheral	Short Description		Valid for Silicon Revision	
		Rev. B <u>(1)</u>	Rev. C	
Device	2.2.1 The Temperature Sensor is Not Calibrated on Parts with Date Code 727, 728 and 1728 (Year 2017, Week 27/28)	X	-	
Device	2.2.2 Writing the OSCLOCK Fuse in FUSE.OSCCFG to '1' Prevents Automatic Loading of Calibration Values	X	X	
	2.3.1 One Extra Measurement Performed After Disabling ADC Free-Running Mode	X	X	
ADC	2.3.2 ADC Functionality Cannot be Ensured with CLKADC Above 1.5 MHz and a Setting of 25% Duty Cycle	X	Х	
	2.3.3 ADC Performance Degrades with CLKADC Above 1.5 MHz and VDD < 2.7V	Х	Х	
	2.3.4 Pending Event Stuck When Disabling the ADC	Χ	Х	
	2.4.1 Connecting LUTs in Linked Mode Requires OUTEN Set to '1'	X	Х	
CCL	2.4.2 D-latch is Not Functional	X	X	
	2.4.3 The CCL Must be Disabled to Change the Configuration of a Single LUT	X	Х	
PORTMUX	2.5.1 Selecting Alternative Output Pin for TCA0 Waveform Output 0-2 also Changes Waveform Output 3-5	X	X	
RTC	2.6.1 Any Write to the RTC.CTRLA Register Resets the RTC and PIT Prescaler	X	Х	
	2.6.2 Disabling the RTC Stops the PIT	X	X	
TCA	2.7.1 Restart Will Reset Counter Direction in NORMAL and FRQ Mode	Х	Х	
	2.8.1 Minimum Event Duration Must Exceed the Selected Clock Period	X	X	
ТСВ	2.8.2 The TCA Restart Command Does Not Force a Restart of TCB	Х	X	
	2.8.3 CCMP and CNT Registers Operate as 16-Bit Registers in 8-Bit PWM Mode	Х	X	
	2.9.1 TXD Pin Override Not Released When Disabling the Transmitter	X	X	
	2.9.2 Frame Error on a Previous Message May Cause False Start Bit Detection	X	X	
USART	2.9.3 Full Range Duty Cycle Not Supported When Validating LIN Sync Field	Х	Х	
	2.9.4 Open-Drain Mode Does Not Work When TXD is Configured as Output	Х	Х	
	2.9.5 Start-of-Frame Detection Can Unintentionally be Enabled in Active Mode when RXCIF is '0'	Х	Х	

Silicon Issue Summary

1		۱ ـ	4 -	
ı	N	\mathbf{a}	ТΔ	ľ

1. This revision is the initial release of the silicon.

2. Silicon Errata Issues

2.1 Errata Details

- Erratum is not applicable.
- **X** Erratum is applicable.

2.2 Device

2.2.1 The Temperature Sensor is Not Calibrated on Parts with Date Code 727, 728 and 1728 (Year 2017, Week 27/28)

The temperature sensor is not calibrated on parts with date code 727/728 (used on QFN packages) and 1728 (used on SOIC packages).

Work Around

If temperature sensor calibration data is required, devices with the affected date code may be returned through the Microchip RMA service. Devices with this date code are no longer shipped by Microchip.

Affected Silicon Revisions

Rev. B	Rev. C
X	-

2.2.2 Writing the OSCLOCK Fuse in FUSE.OSCCFG to '1' Prevents Automatic Loading of Calibration Values

Writing the OSCLOCK fuse in FUSE.OSCCFG to '1' prevents the automatic loading of calibration values from the signature row. The device will run with an uncalibrated OSC20M oscillator.

Work Around

Do not use OSCLOCK for locking the oscillator calibration value. The oscillator calibration value can be locked by writing LOCK in CLKCTRL.OSC20MCALIBB to '1'.

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.3 ADC - Analog-to-Digital Converter

2.3.1 One Extra Measurement Performed After Disabling ADC Free-Running Mode

The ADC may perform one additional measurement after clearing ADCn.CTRLA.FREERUN.

Work Around

Write ADCn.CTRLA.ENABLE to '0' to stop the Free-Running mode immediately.

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.3.2 ADC Functionality Cannot be Ensured with CLK_{ADC} Above 1.5 MHz and a Setting of 25% Duty Cycle

The ADC functionality cannot be ensured if CLK_{ADC} > 1.5 MHz with ADCn.CALIB.DUTYCYC set to '1'.

Work Around

If ADC is operated with CLK_{ADC} > 1.5 MHz, ADCn.CALIB.DUTYCYC must be set to '0' (50% duty cycle).

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.3.3 ADC Performance Degrades with CLK_{ADC} Above 1.5 MHz and VDD < 2.7V

The ADC INL performance degrades if CLK_{ADC} > 1.5 MHz and ADCn.CALIB.DUTYCYC set to '0' for VDD < 2.7V.

Work Around

None.

Affected Silicon Revisions

Rev. B	Rev. C
Х	Х

2.3.4 Pending Event Stuck When Disabling the ADC

If the ADC is disabled during an event-triggered conversion, the event will not be cleared.

Work Around

Clear ADC.EVCTRL.STARTEI and wait for the conversion to complete before disabling the ADC.

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.4 CCL - Configurable Custom Logic

2.4.1 Connecting LUTs in Linked Mode Requires OUTEN Set to '1'

Connecting the LUTs in linked mode requires LUTnCTRLA. OUTEN set to '1' for the LUT providing the input source.

Work Around

Use an event channel to link the LUTs, or do not use the corresponding I/O pin for other purposes.

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.4.2 D-latch is Not Functional

The CCL D-latch is not functional.

Work Around

None.

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.4.3 The CCL Must be Disabled to Change the Configuration of a Single LUT

To reconfigure a LUT, the CCL peripheral must be disabled (write ENABLE in CCL.CTRLA to '0'). Writing ENABLE to '0' will disable all the LUTs, and affects the LUTs not under reconfiguration.

Work Around

None

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.5 PORTMUX - Port Multiplexer

2.5.1 Selecting Alternative Output Pin for TCA0 Waveform Output 0-2 also Changes Waveform Output 3-5

Selecting the alternative output pin for TCA0 in PORTMUX.CTRLC does not work as described when TCA0 operates in split mode.

- Writing PORTMUX.CTRLC bit 0 to '1' will shift the pin position for both WO0 and WO3
- · Writing PORTMUX.CTRLC bit 1 to '1' will shift the pin position for both WO1 and WO4
- Writing PORTMUX.CTRLC bit 2 to '1'will shift the pin position for both WO2 and WO5

PORTMUX.CTRLC[5:3] are non-functional.

Work Around

None.

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.6 RTC - Real-Time Counter

2.6.1 Any Write to the RTC.CTRLA Register Resets the RTC and PIT Prescaler

Any write to the RTC.CTRLA register resets the 15-bit prescaler resulting in a longer period on the current count or period.

Work Around

None.

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.6.2 Disabling the RTC Stops the PIT

Writing RTC.CTRLA.RTCEN to '0' will stop the PIT.

Writing RTC.PITCTRLA.PITEN to '0' will stop the RTC.

Work Around

Do not disable the RTC or the PIT if any of the modules are used.

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.7 TCA - Timer/Counter A

2.7.1 Restart Will Reset Counter Direction in NORMAL and FRQ Mode

When the TCA is configured to the NORMAL or FRQ mode (WGMODE in TCAn.CTRLB is ' 0×0 ' or ' 0×1 '), a RESTART command or Restart event will reset direction to default. The default is counting upwards.

Work Around

None.

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.8 TCB - Timer/Counter B

2.8.1 Minimum Event Duration Must Exceed the Selected Clock Period

Event detection will fail if TCBn receives an input event with a high/low period shorter than the period of the selected clock source (CLKSEL in TCBn.CTRLA). This applies to the TCB modes (CNTMODE in TCBn.CTRLB) *Time-Out Check* and *Input Capture Frequency and Pulse-Width Measurement* mode.

Work Around

Ensure that the high/low period of input events is equal to or longer than the period of the selected clock source (CLKSEL in TCBn.CTRLA).

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.8.2 The TCA Restart Command Does Not Force a Restart of TCB

The TCA restart command does not force a restart of the TCB when TCB is running in SYNCUPD mode. TCB is restarted only after a TCA OVF.

Work Around

None.

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.8.3 CCMP and CNT Registers Operate as 16-Bit Registers in 8-Bit PWM Mode

When the TCB is operating in 8-bit PWM mode (CNTMODE in TCBn.CTRLB is ' 0×7 '), the low and high bytes for the CNT and CCMP registers operate as 16-bit registers for read and write. They cannot be read or written independently.

Work Around

Use 16-bit register access. Refer to the data sheet for further information.

Affected Silicon Revisions

Rev. B	Rev. C	
Х	X	

2.9 USART - Universal Synchronous and Asynchronous Receiver and Transmitter

2.9.1 TXD Pin Override Not Released When Disabling the Transmitter

The USART will not release the TXD pin override if:

- The USART transmitter is disabled by writing the TXEN bit in USART.CTRLB to '0' while the USART receiver is disabled (RXEN in USART.CTRLB is '0')
- Both the USART transmitter and receiver are disabled at the same time by writing the TXEN and RXEN bits in USART.CTRLB to '0'

Work Around

There are two possible work arounds:

- Make sure the receiver is enabled (RXEN in USART.CTRLB is '1') while disabling the transmitter (writing TXEN in USART.CTRLB to '0')
- Writing to any register in the USART after disabling the transmitter will start the USART for long enough to release the pin override of the TXD pin

Silicon Errata Issues

Affected Silicon Revisions

Rev. B	Rev. C
Х	X

2.9.2 Frame Error on a Previous Message May Cause False Start Bit Detection

A false start bit detection will trigger if receiving a frame with RXDATAH.FERR set and reading the RXDATAL before the RxD line goes high.

Work Around

Wait for the RXD pin to go high before reading RXDATA, for instance, by polling the bit in PORTn.IN where the RXD pin is located.

Affected Silicon Revisions

Rev. B	Rev. C	
X	X	

2.9.3 Full Range Duty Cycle Not Supported When Validating LIN Sync Field

For the LIN sync field, the USART is validating each bit to be within ±15% instead of the time between falling edges as described in the LIN specification, which allows a minimum duty cycle of 43.5% and a maximum duty cycle of 57.5%.

Work Around

None.

Affected Silicon Revisions

Rev. B	Rev. C			
X	X			

2.9.4 Open-Drain Mode Does Not Work When TXD is Configured as Output

When the USART TXD pin is configured as an output, it can drive the pin high regardless of whether the Open-Drain mode is enabled or not.

Work Around

Configure the TXD pin as an input by writing the corresponding bit in PORTx.DIR to '0' when using Open-Drain mode.

Affected Silicon Revisions

Rev. B	Rev. C
X	X

2.9.5 Start-of-Frame Detection Can Unintentionally be Enabled in Active Mode when RXCIF is '0'

The Start-of-Frame Detector can unintentionally be enabled when the device is in Active mode and when the Receive Complete Interrupt Flag (RXCIF) in the USARTn.STATUS register is '0'. If the Receive Data (RXDATA) registers are read while receiving new data, RXCIF is cleared, and the Start-of-Frame Detector will be enabled and falsely detects the following falling edge as a start bit. When the Start-of-Frame Detector detects a start condition, the frame reception is restarted, resulting in corrupt received data. Note that the USART Receive Start Interrupt Flag (RXSIF) always is '0' when in Active mode, so no interrupt will be triggered.

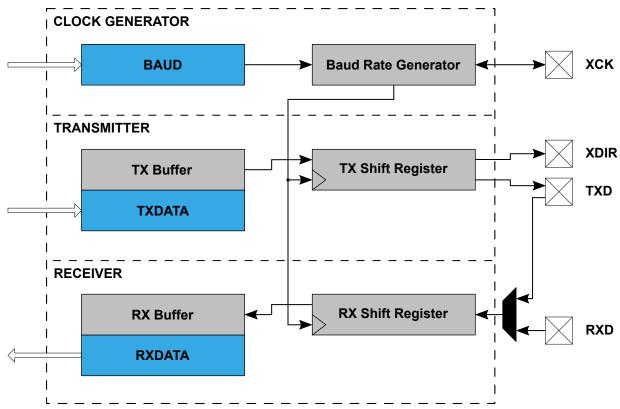
Work Around

Disable Start-of-Frame Detection by writing '0' to the Start-of-Frame Detection Enable (SFDEN) bit in the USART Control B (USARTn.CTRLB) register when the device is in Active mode. Enable it again by writing the bit to '1' before transitioning to Standby sleep mode. This work around depends on a protocol preventing a new incoming frame when re-enabling Start-of-Frame Detection. Re-enabling Start-of-Frame Detection, while a new frame is already incoming, will result in corrupted received data.

Affected Silicon Revisions

Rev. B	Rev. C			
X	X			

3. Data Sheet Clarifications


The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (www.microchip.com/DS50002687).

Note: Corrections are shown in bold. Where possible, the original bold text formatting has been removed for clarity.

3.1 USART - Universal Synchronous and Asynchronous Receiver and Transmitter

The block diagram is missing that USART TX is double-buffered from figure 25-1 in the data sheet. Added **TX Buffer** is shown below.

Figure 3-1. Block Diagram

The following text is changed in the Overview section:

The transmitter consists of a two-level write buffer.

The following text is changed in the *Data Transmission* section:

The data transmission is initiated by loading the **Transmit Data (USARTn.TXDATAL and USARTn.TXDATAH)** registers with the data to be sent. The data in the **Transmit Data registers are moved to the TX Buffer** once it is empty and onwards to the Shift register once it is empty and ready to send a new frame.

3.2 Electrical Characteristics

3.2.1 ADC

A clarification has been made to the electrical characteristics for the ADC peripheral:

· Added a note for 50% duty cycle

Table 3-1. Clock and Timing Characteristics

Symbol	Description	Conditions	Min.	Тур.	Max.	Unit
f _{ADC}	Sample rate	1.1V ≤ V _{REF}	15	-	115	ksps
		1.1V ≤ V _{REF} (8-bit resolution)	15	-	150	
		V _{REF} = 0.55V (10-bit)	7.5	-	20	
CLK _{ADC}	Clock frequency	V _{REF} = 0.55V (10-bit)	100	-	260	kHz
		1.1V ≤ V _{REF} (10-bit)	200	-	1500	
		1.1V ≤ V _{REF} (8-bit resolution)	200	-	2000(1)	
Ts	Sampling time		2	2	33	CLK _{ADC} cycles
T _{CONV}	Conversion time (latency)	Sampling time = 2 CLK _{ADC}	8.7	-	50	μs
T _{START}	Start-up time	Internal V _{REF}	-	22	-	μs

Note:

1. 50% duty cycle is required for clock frequencies above 1500 kHz.

3.3 Package Drawings

The information in the *Device and Package Maximum Weight* and *Package Reference* tables might be outdated. Refer to the RoHS information table on the device product page for up to date information.

The Moisture Sensitivity Level (MSL) information in the data sheet might be wrong, as this is dependent on the assembly site. To determine the MSL information for Microchip device shipments received from Microchip, review the label that is affixed to each bag, reel and inner box.

If neither the bag, reel or inner box is available, MSL information can be determined by reviewing Table 3.3 in the *Package Qualification Summary Report* posted at microchip.com/quality. The report is organized by package type and assembly site.

4. Document Revision History

Note: The document revision is independent of the silicon revision.

4.1 Revision History

Doc. Rev.	Date	Comments
С	12/2020	 Added silicon revision C Added new errata: — Device: Writing the OSCLOCK Fuse in FUSE.OSCCFG to '1' Prevents Automatic Loading of Calibration Values — ADC: Pending Event Stuck When Disabling the ADC — CCL: The CCL Must be Disabled to Change the Configuration of a Single LUT — TCA: Restart Will Reset Counter Direction in NORMAL and FRQ Mode — TCB: CCMP and CNT Registers Operate as 16-Bit Registers in 8-Bit PWM Mode — USART: — Full Range Duty Cycle Not Supported When Validating LIN Sync Field — Open-Drain Mode Does Not Work When TXD is Configured as Output — Start-of-Frame Detection Can Unintentionally be Enabled in Active Mode when RXCIF is '0' Added new data sheet clarifications: — USART — Package Drawings
В	10/2019	 Updated document template The ADC errata, ADC Functionality Cannot be Ensured with ADCCLK Above 1.5 MHz for All Conditions, has been split into two separate erratas and rewritten Added clarification for ADC electrical characteristics
Α	06/2019	Initial document release

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
 of the Microchip devices. We believe that these methods require using the Microchip products in a manner
 outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code
 protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
 protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly
 evolving. We at Microchip are committed to continuously improving the code protection features of our products.
 Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act.
 If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
 for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-7275-9

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380	15 55 155 52 155 15		Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY			Tel: 46-31-704-60-40
Tel: 631-435-6000			Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			1 da. 77-110-92 1-0020
Fax: 905-695-2078			
I an. 300-030-20/0			

DS40002124C-page 17 **Errata** © 2020 Microchip Technology Inc.