Low V_{CE(sat)}, Transistor, PNP, 12 V, 1.0 A, SOT-723 Package

ON Semiconductor's e²PowerEdge family of low $V_{CE(sat)}$ transistors are miniature surface mount devices featuring ultra low saturation voltage ($V_{CE(sat)}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical application are DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

Features

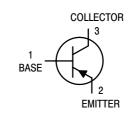
- High Continuous Current Capability (1 A)
- Low V_{CE(sat)} (150 mV Typical @ 500 mA)
- Small Size 1.2 mm x 1.2 mm
- This is a Pb-Free Device

Benefits

- High Specific Current and Power Capability Reduces Required PCB Area
- Reduced Parasitic Losses Increases Battery Life

MAXIMUM R	ATINGS ((T _A = 25°C)
-----------	----------	-------------------------

Rating	Symbol	Max	Unit	
Collector-Emitter Voltage	V _{CEO}	-12	Vdc	
Collector-Base Voltage	V _{CBO}	-12	Vdc	
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc	
Collector Current – Continuous – Peak	I _C I _{CM}	-1.0 -3.0	Adc	
Electrostatic Discharge	ESD	HBM Class 3B MM Class C		


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

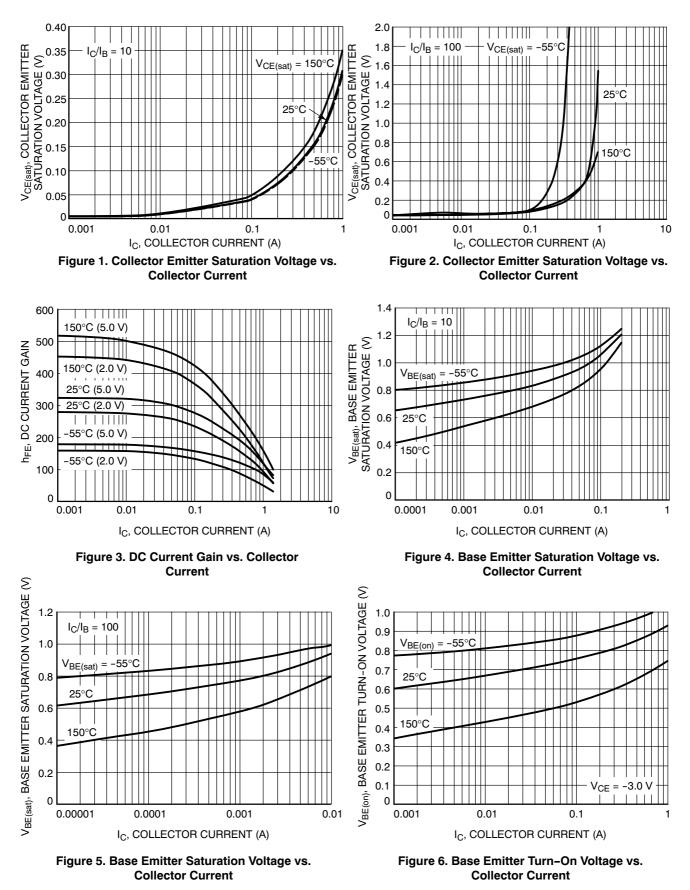
http://onsemi.com

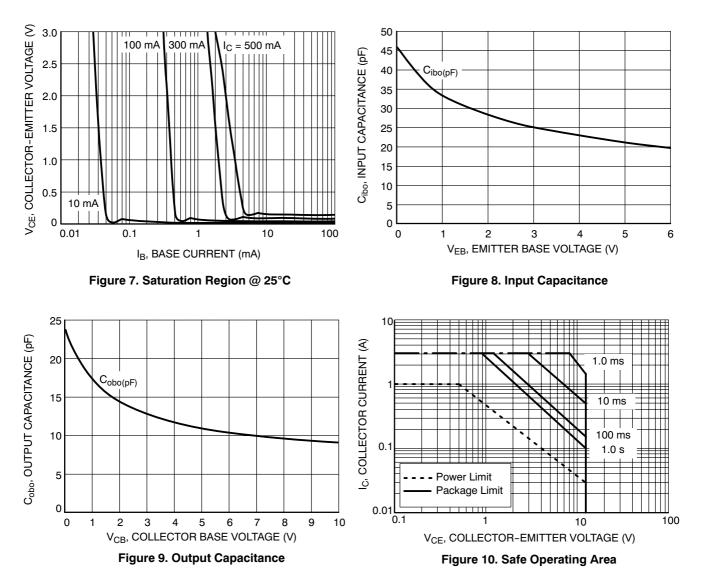
$\begin{array}{l} \mbox{12 VOLTS, 1.0 AMPS} \\ \mbox{PNP LOW } V_{CE(sat)} \mbox{ TRANSISTOR} \\ \mbox{EQUIVALENT } R_{DS(on)} \mbox{ 350 m} \Omega \end{array}$

VE = Specific Device Code M = Date Code

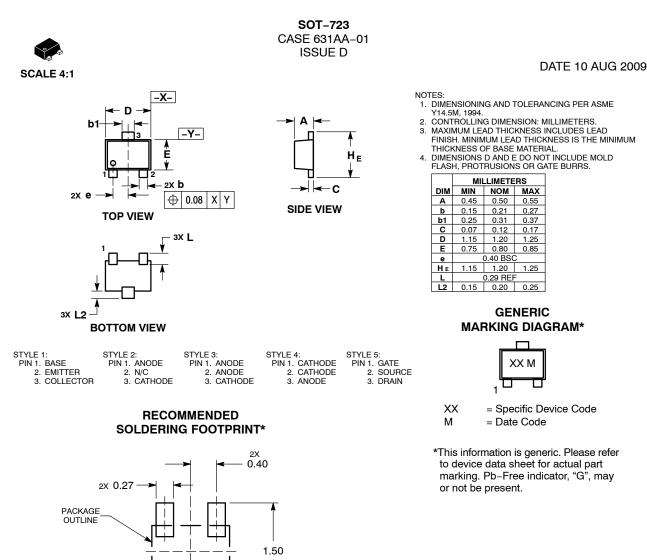
ORDERING INFORMATION

Device	Package	Shipping [†]
NSS12100M3T5G	SOT-723 (Pb-Free)	8000/ Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах			Unit
Total Device Dissipation $T_A = 25^{\circ}C$	P _D (Note 1)	460			mW
Derate above 25°C		3.7			mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$ (Note 1)	270			°C/W
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above 25°C	P _D (Note 2)	625			mW
Thermal Resistance, Junction-to-Ambient	R _{0JA} (Note 2)	5.0 200			mW/°C °C/W
Thermal Resistance, Junction-to-Lead 3	R _{θJL}	105			°C/W
Junction and Storage Temperature Range	T _J , T _{stg}		°C		
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise not	ted)				
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage, $(I_C = -10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	-12	-	-	Vdc
Collector – Base Breakdown Voltage, ($I_C = -0.1 \text{ mAdc}, I_E = 0$)	V _{(BR)CBO}	-12	-	-	Vdc
Emitter – Base Breakdown Voltage, ($I_E = -0.1 \text{ mAdc}$, $I_C = 0$)	V _{(BR)EBO}	-5.0	-	-	Vdc
Collector Cutoff Current, (V _{CB} = -12 Vdc, $I_E = 0$)	I _{CBO}	-	-0.01	-0.1	μAdc
Emitter Cutoff Current, ($V_{CES} = -5.0$ Vdc, $I_E = 0$)	I _{EBO}	-	-0.01	-0.1	μAdc
ON CHARACTERISTICS			•	•	
DC Current Gain (Note 3) ($I_C = -10 \text{ mA}, V_{CE} = -2.0 \text{ V}$) ($I_C = -500 \text{ mA}, V_{CE} = -2.0 \text{ V}$) ($I_C = -1.0 \text{ A}, V_{CE} = -2.0 \text{ V}$)	h _{FE}	200 120 80		- - -	
Collector – Emitter Saturation Voltage (Note 3) ($I_C = -0.05 \text{ A}, I_B = -0.005 \text{ A}$) (Note 4) ($I_C = -0.1 \text{ A}, I_B = -0.002 \text{ A}$)	V _{CE(sat)}	- - -	-0.030 -0.060 -0.040 -0.155	-0.035 -0.080 -0.060 -0.220	V
$(I_{C} = -0.1 \text{ A}, I_{B} = -0.010 \text{ A})$ $(I_{C} = -0.5 \text{ A}, I_{B} = -0.050 \text{ A})$ $(I_{C} = -1.0 \text{ A}, I_{B} = -0.100 \text{ A})$		-	-0.350	-0.410	
$(I_{C} = -0.1 \text{ A}, I_{B} = -0.010 \text{ A})$ $(I_{C} = -0.5 \text{ A}, I_{B} = -0.050 \text{ A})$	V _{BE(sat)}			-0.410 -1.15	V


Input Capacitance (V _{EB} = -0.5 V, f = 1.0 MHz)	Cibo	-	40	50	pF
Output Capacitance (V _{CB} = -3.0 V, f = 1.0 MHz)	Cobo	-	15	20	pF
Noise Figure (I_C = 0.2 mA, V_{CE} = 5.0 V, R_S = 1.0 k\Omega, f = 1.0 MHz, BW = 200 Hz)	NF	-	_	5.0	dB

1. FR-4 @ 100 mm², 1 oz copper traces. 2. FR-4 @ 500 mm², 1 oz copper traces. 3. Pulsed Condition: Pulse Width = 300 μ sec, Duty Cycle \leq 2%. 4. Guaranteed by design but not tested.

3X 0.52 - - 0.36 DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

 DOCUMENT NUMBER:
 98AON12989D
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOT-723
 PAGE 1 OF 1

 ON Semiconductor and ON semiconductor components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>