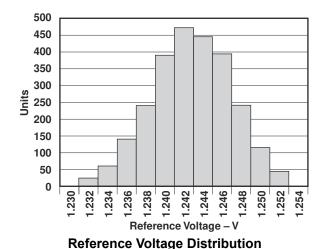


TLV3011-Q1, TLV3012-Q1 SBOS551B - MARCH 2011 - REVISED AUGUST 2022


TLV3011-Q1 and TLV3012-Q1 Low Power Comparator With Integrated 1.24V Voltage Reference

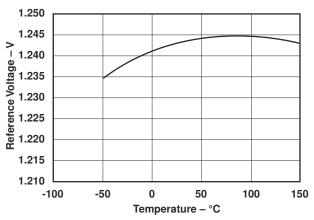
1 Features

- Qualified for automotive applications
- AEC-Q100 qualified with the following results:
 - Device temperature grade 1: –40°C to +125°C ambient operating temperature range
 - Device HBM ESD classification level 2
 - Device CDM ESD classification level C6
- Low quiescent current: 5 µA (maximum)
- Integrated voltage reference: 1.242 V
- Input common-mode range: 200 mV beyond rails
- Voltage reference initial accuracy: 1%
- Open drain output option (TLV3011-Q1)
- Push-pull output option (TLV3012-Q1)
- Fast response time: 6 uS
- Low supply voltage = 1.8 V to 5.5 V

2 Applications

- Lane departure warning
- Cluster
- Toll tag
- Asset tracking
- Battery management systems

3 Description


The TLV3011-Q1 is a low-power, open-drain output comparator; the TLV3012-Q1 is a push-pull output comparator. Both devices feature an uncommitted on-chip voltage reference and has a 5-µA (max) quiescent current, an input common-mode range 200 mV beyond the supply rails, and single-supply operation from 1.8 V to 5.5 V. The integrated 1.242-V series voltage reference offers low 100-ppm/°C (maximum) drift, is stable with up to 10-nF capacitive load, and can provide up to 0.5 mA (typical) of output current.

The TLV3011-Q1 and TLV3012-Q1 are available in the tiny SOT23-6 package for space-conservative designs, and in the SC-70 package for even greater board area savings. Both versions are specified for the temperature range of -40°C to +125°C.

Device Information

PART NUMBER	PACKAGE (1)	BODY SIZE (NOM)
TLV3011-Q1,	SOT-23 (6)	2.90 mm × 1.60 mm
TLV3012-Q1	SC-70 (6)	2.00 mm × 1.25 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Reference Voltage vs Temperature

Table of Contents

1 Features1	8.2 Functional Block Diagram	13
2 Applications 1	8.3 Feature Description	
3 Description	8.4 Device Functional Modes	
4 Revision History2	9 Application and Implementation	14
5 Pin Configuration and Functions3	9.1 Application Information	14
6 Specifications4	9.2 Typical Application	
6.1 Absolute Maximum Ratings4	9.3 System Examples	
6.2 ESD Ratings4	9.4 Power Supply Recommendations	
6.3 Thermal Information4	9.5 Layout	19
6.4 Recommended Operating Conditions4	10 Device and Documentation Support	20
6.5 Electrical Characteristics - DBV Package5	10.1 Receiving Notification of Documentation Upd	ates <mark>20</mark>
6.6 Switching Characteristics - DBV Package6	10.2 Support Resources	20
6.7 Electrical Characteristics - DCK Package7	10.3 Trademarks	20
6.8 Switching Characteristics - DCK Package8	10.4 Electrostatic Discharge Caution	20
7 Typical Characteristics9	10.5 Glossary	20
8 Detailed Description13	11 Mechanical, Packaging, and Orderable	
8.1 Overview	Information	20

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	hanges from Revision A (June 2019) to Revision B (August 2022)	Page
•	Added TLV3011-Q1 in both DBV and DCK Packages	1
•	Added TLV3012-Q1 in SOT-23 (DBV)	
•	Added new tables for DBV packages	1
•	Updated the numbering format for tables, figures, and cross-references throughout the document	
C	hanges from Revision * (March 2011) to Revision A (June 2019)	Page
•	Added the HBM and CDM ESD ratings and classification levels. Also added the AEC-Q100 device	
	temperature grade	1
•	Changed the Applications list	
•	Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Devi	
	Functional Modes, Application and Implementation section, Power Supply Recommendations section	, Layout
	section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Info.	rmation
	section	1
•	Deleted the TLV3011-Q1 device from the data sheet and removed A from the TLV3012-Q1 part numb	er1
•	Deleted the Package Ordering Information section	
•	Moved the switching characteristics from the Electrical Characteristics table to the Switching Character	
	table	8

5 Pin Configuration and Functions

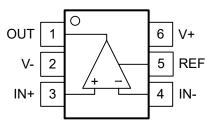


Figure 5-1. DCK, DBV Package 6-Pin SC-70, SOT-23 Top View

Table 5-1. Pin Functions

F	PIN	I/O	DESCRIPTION
NO.	NAME		DESCRIPTION
1	OUT	0	Comparator Output
2	V-	-	Negative (lowest) power supply
3	IN+	ļ	Non-inverting comparator input
4	IN-	I	Inverting comparator input
5	REF	0	Reference Output
6	V+	-	Positive (highest) power supply

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)

	MIN	MAX	UNIT
Supply voltage: $V_S = (V+) - (V-)$	-0.5	7	V
Input pins (IN+, IN–) from (V–) ⁽²⁾	-0.5	(V+) + 0.5	V
Current into Input pins (IN+, IN-) ⁽²⁾	-10	10	mA
Output short circuit current ⁽³⁾	Contir	nuous	mA
Junction temperature, T _J		150	°C
Storage temperature, T _{stg}	-65	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values are with respect to the network ground pin.
- (3) Short-circuit to ground.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V
V _(ESD)	discharge	Charged-device model (CDM), per AEC Q100-0111	±1000	V

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Thermal Information

		TLV3011-Q1	, TLV3012-Q1	
	THERMAL METRIC(1)	DCK (SC-70)	DBV (SOT-23)	UNIT
		6 PINS	6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	169.8	162.5	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	120.5	78.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	63.2	42.1	°C/W
ΨЈТ	Junction-to-top characterization parameter	45.9	21.2	°C/W
ΨЈВ	Junction-to-board characterization parameter	63.0	41.9	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	-	-	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Supply Voltage, $V_S = (V+) - (V-)$	1.8	5.5	V
Input Voltage Range, I _{VR}	(V-) - 0.2	(V+) + 0.2	V
Output voltage range from (V–) for open drain	V-	≤ V+	V
Ambient Temperature, T _A	-40	125	°C

Submit Document Feedback

6.5 Electrical Characteristics - DBV Package

For V_S (TOTAL SUPPLY VOLTAGE) = (V+) - (V-) = 1.8V and 5.5V, $V_{CM} = V_S/2$ at $T_A = 25^{\circ}C$ (Unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET VC	DLTAGE					
	Input offset	V 0/2		.00		
V _{OS}	voltage	V _{CM} = (V-)	-6	±0.3	6	mV
V _{OS}	Input offset voltage	$V_{CM} = (V-)$ $T_A = -40$ °C to +125°C	-9		9	mV
dV _{IO} /dT	Input offset voltage drift	$V_{CM} = (V-)$ $T_A = -40^{\circ}C \text{ to } +125^{\circ}C$		±12		μV/°C
PSRR	power supply rejection ratio	$V_{CM} = (V-)$ $V_{S} = 1.8 \text{ V to } 5.5 \text{ V}$ $T_{A} = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		100	1000	μV/V
V _{HYS}	Input hysteresis voltage	T _A = -40°C to +125°C	2	6	8	mV
INPUT BIAS	CURRENT				L	
I _B	Input bias current	V _{CM} = V _S /2	-10 ⁽¹⁾	±4.5	10 ⁽¹⁾	рА
I _{OS}	Input offset current	V _{CM} = V _S /2	-10 ⁽¹⁾	±1	10 ⁽¹⁾	рА
INPUT COM	IMON MODE RANGI	Ξ				
V _{CM-Range}	Common-mode voltage range	V _S = 1.8 V to 5.5 V	(V-) - 0.2		(V+) + 0.2	V
CMRR	Common mode rejection ratio	V _{CM} = (V–) + 1.5V to (V+) + 0.2V	57	74		dB
CMRR	Common mode rejection ratio	V _{CM} = (V-) - 0.2V to (V+) + 0.2V	50	62		dB
R _{CM}	Input Common Mode Resistance			10 ¹³		Ω
C _{IC}	Input Common Mode Capacitance			2		pF
INPUT IMPE	DANCE					
R _{DM}	Input Differential Mode Resistance			10 ¹³		Ω
C _{ID}	Input Differential Mode Capacitance			4		pF
OUTPUT					'	
V _{OL}	Voltage swing from (V–)	$V_S = 5 V$ $I_{SINK} = 5 mA$ $T_A = -40$ °C to +125°C		160	200	mV
V _{OH}	Voltage swing from (V+) (for Push-Pull only)	$V_S = 5 V$ $I_{SOURCE} = 5 \text{ mA}$ $T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		90	200	mV
VOLTAGE F	REFERENCE					
V _{OUT}	Reference Voltage		1.223	1.242	1.260	V
	Accuracy			±0.25%	±1.5%	
	Reference Voltage	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	1.208	1.242	1.276	V
dV _{OUT} /d _T	Temperature Drift	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		40	100	ppm/°C
dV _{OUT} / dl _{LOAD}	Load Regulation, Sourcing	0 mA < I _{SOURCE} ≤ 0.5 mA		0.36	1 ⁽¹⁾	mV/mA
	Load Regulation, Sinking	0 mA < I _{SINK} ≤ 0.5 mA		6.6		mV/mA
ILOAD	Output Current			0.5		mA
dV _{OUT} /dV _S	Line Regulation	1.8 V ≤ V _S ≤ 5.5 V		10	100 ⁽¹⁾	μV/V

6.5 Electrical Characteristics - DBV Package (continued)

For V_S (TOTAL SUPPLY VOLTAGE) = (V+) – (V–) = 1.8V and 5.5V, $V_{CM} = V_S/2$ at $T_A = 25^{\circ}C$ (Unless otherwise noted)

PAF	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{noise}	Noise	f = 0.1 Hz to 10 Hz		0.2		${\sf mV}_{\sf PP}$
POWER SUPPLY						
IQ	Quiescent current per comparator	Output is logic high		2.8	5	μΑ

⁽¹⁾ Ensured by characterization

6.6 Switching Characteristics - DBV Package

For V_S (TOTAL SUPPLY VOLTAGE) = (V+) - (V-) = 1.8 V and 5.5 V, $V_{CM} = V_S / 2$ at $T_A = 25^{\circ}\text{C}$ (Unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT						
T _{PD-LH}	Propagation delay time, low-to- high	$f = 10 \text{ kHz}, V_{STEP} = 1V, V_{OD} = 10 \text{ mV}, C_L = 10 \text{ pF}$		12		μs
T _{PD-LH}	Propagation delay time, low-to- high	$f = 10 \text{ kHz}, V_{STEP} = 1V, V_{OD} = 100 \text{ mV}, C_L$ = 10 pF		6		μs
T _{PD-HL}	Propagation delay time, high-to-low	$f = 10 \text{ kHz}, V_{STEP} = 1V, V_{OD} = 10 \text{ mV}, C_L = 10 \text{ pF}$		13.5		μs
T _{PD-HL}	Propagation delay time, high-to-low	$f = 10 \text{ kHz}, V_{STEP} = 1V, V_{OD} = 100 \text{ mV}, C_{L}$ = 10 pF		6.5		μs
T _{RISE}	Output Rise Time, 20% to 80%, push-pull output	C _L = 10 pF		100		ns
T _{RISE}	Output Rise Time, 20% to 80%, open-drain output	$R_L = 10 \text{ k}\Omega, C_L = 10 \text{ pF}$		200		ns
T _{FALL}	Output Fall Time, 80% to 20%	C _L = 10 pF		100		ns
T _{FALL}	Output Fall Time, 80% to 20%, open-drain output	$R_L = 10 \text{ k}\Omega, C_L = 10 \text{ pF}$		200		ns

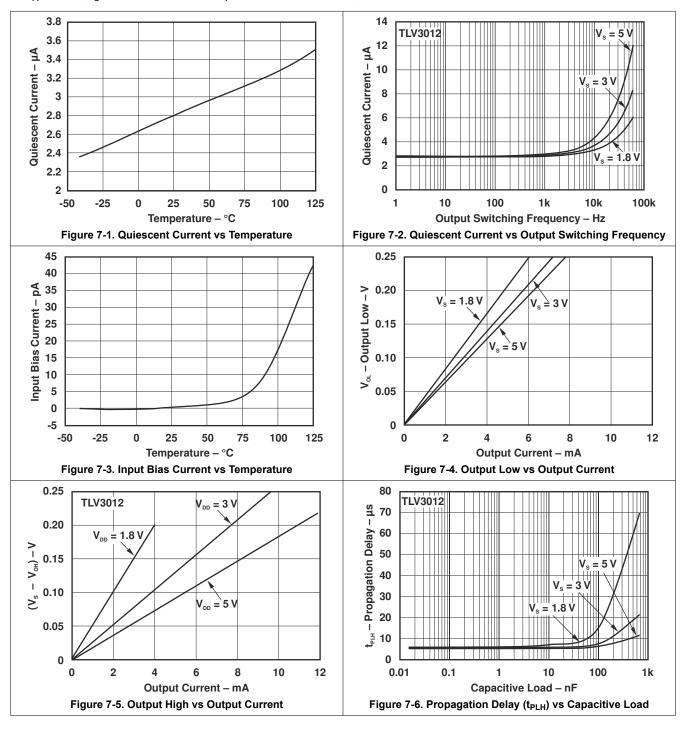
Product Folder Links: TLV3011-Q1 TLV3012-Q1

Ibmit Document Feedback

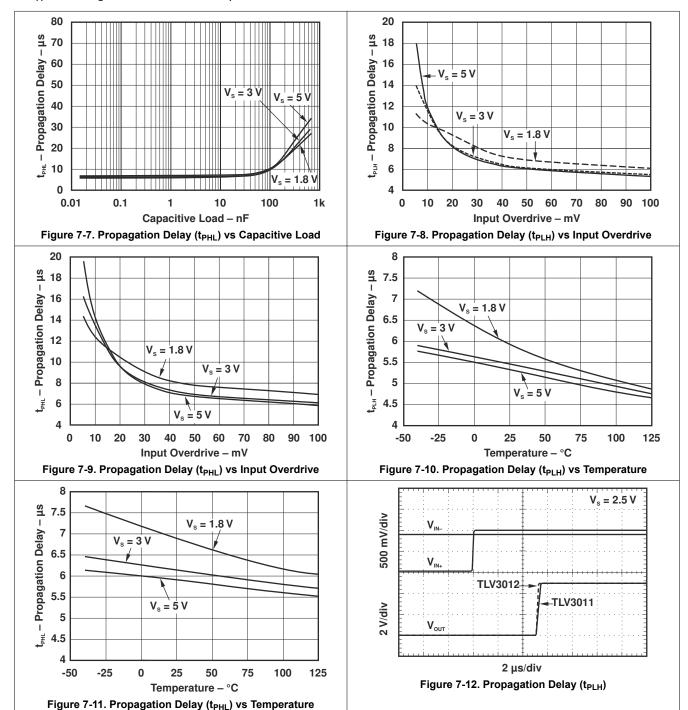
6.7 Electrical Characteristics - DCK Package

 V_S = 1.8 V to 5.5 V, at T_A = 25°C, V_{OUT} = V_S , unless otherwise noted

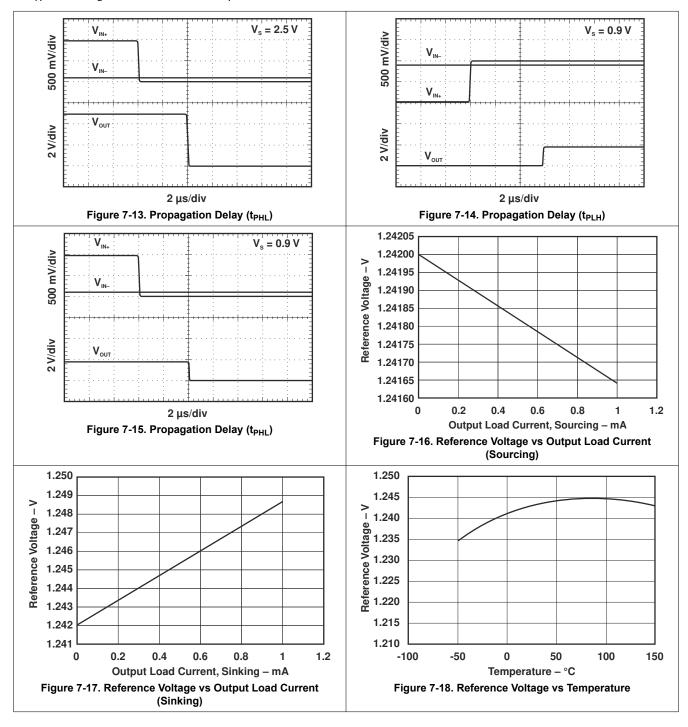
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET VO	LTAGE					
V _{OS}	Input offset voltage	V _{CM} = 0 V, I _O = 0 V		0.5	15	mV
dV _{OS} /dT	Input offset voltage vs temperature	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		±12		μV/°C
PSRR	Power supply rejection ratio	V _S = 1.8 V to 5.5 V		100	1000	μV/V
INPUT BIAS	CURRENT				'	
I _B	Input bias current	$V_{CM} = V_S/2$		±10		pA
I _{os}	Input offset current	$V_{CM} = V_S/2$		±10		pA
INPUT VOLT	TAGE RANGE				'	
V _{CM}	Common-mode voltage range		(V-) - 0.2		(V+) + 0.2	V
OMPD		$V_{CM} = -0.2 \text{ V to (V+)} - 1.5 \text{ V}$	60	74		15
CMRR	Common-mode rejection ratio	$V_{CM} = -0.2 \text{ V to (V+)} + 0.2 \text{ V}$	54	62		dB
INPUT IMPE	DANCE					
	Common mode			10 ¹³ 2		Ω ∥ pF
	Differential			10 ¹³ 4		Ω ∥ pF
OUTPUT						
V _{OL}	Voltage output low from rail	V _S = 5 V, I _{OUT} = –5 mA		160	200	mV
V _{OH}	Voltage output high from rail	V _S = 5 V, I _{OUT} = 5 mA		90	200	mV
	Chart singuit summer				See Typical	
	Short-circuit current			Ch	aracteristics	
VOLTAGE R	EFERENCE	,	1		'	
V _{OUT}	Output voltage		1.208	1.242	1.276	V
	Initial accuracy				±1%	
dV _{OUT} /d _T	Temperature drift	–40°C ≤ T _A ≤ 125°C		40	100	ppm/°C
dV _{OUT} /	Load regulation, sourcing	0 mA < I _{SOURCE} ≤ 0.5 mA		0.36	1	
dl _{LOAD}	Load regulation, sinking	0 mA < I _{SINK} ≤ 0.5 mA		6.6		mV/mA
I _{LOAD}	Output current			0.5		mA
dV _{OUT} /dV _{IN}	Line regulation	1.8 V ≤ V _{IN} ≤ 5.5 V		10	100	μV/V
NOISE					'	
	Reference voltage noise	f = 0.1 Hz to 10 Hz		0.2		mV _{PP}
POWER SUI	PPLY				'	
Vs	Specified voltage		1.8		5.5	V
	Operating voltage range		1.8		5.5	V
IQ	Quiescent current	$V_S = 5 \text{ V}, V_O = \text{High}$		2.8	5	μA
TEMPERATI	URE	'			I	
	Operating range		-40		125	°C
	Storage range		-65		150	°C


6.8 Switching Characteristics - DCK Package

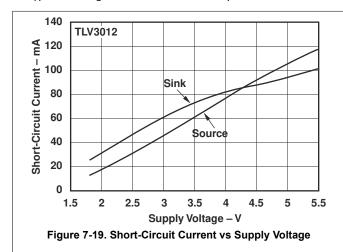
over operating free-air temperature range (unless otherwise noted)

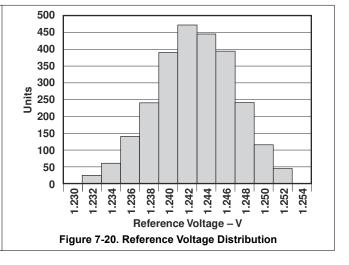

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	f = 10 kHz, V _{STEP} = 1 V, input overdrive = 10 mV		12		lie.	
Propagation delay time, low to high	f = 10 kHz, V _{STEP} = 1 V, input overdrive = 100 mV		μs			
Propagation delay time, high to low	f = 10 kHz, V _{STEP} = 1 V, input overdrive = 10 mV	13.5				
	f = 10 kHz, V _{STEP} = 1 V, input overdrive = 100 mV		6.5		μs	
t _r Rise time	C _L = 10 pF		100		ns	
t _f Fall time	C _L = 10 pF		100		ns	

7 Typical Characteristics

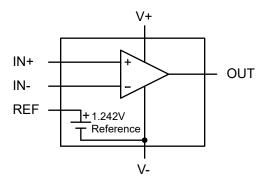


7 Typical Characteristics (continued)




7 Typical Characteristics (continued)

7 Typical Characteristics (continued)



8 Detailed Description

8.1 Overview

The TLV301x-Q1 is a MicroPower comparator with an integrated reference that is well suited for compact, low-current, precision voltage detection applications. With a high-accuracy, internal reference of 1.242 V and 5 uA of quiescent current, the TLV301x-Q1 enables power conscious systems to monitor and respond quickly to fault conditions.

8.2 Functional Block Diagram

8.3 Feature Description

The TLV301x-Q1 is comprised of a rail-to-rail input comparator with open-drain or push-pull output options and a voltage reference that is externally available.

8.4 Device Functional Modes

The TLV301x-Q1 requires an operating voltage between 1.8 V and 5.5 V for the comparator output to reflect the voltage applied to the inputs. Similarly, the reference output (REF) will also be valid over the same operating voltage range.

8.4.1 Open Drain Output (TLV3011-Q1)

The TLV3011-Q1 features an Open-Drain (sinking only) output that allows multiple devices to be driven by a single pull-up resistor to accomplish an OR function, making the TLV3011-Q1 useful for logic applications. The value of the pull-up resistor and supply voltage used will affect current consumption due to additional current drawn when the output is in a low state. This effect can be seen in the typical curve Quiescent Current vs Output Switching Frequency.

The pull-up voltage should NOT exceed the V+ suppply.

8.4.2 Push-Pull Output (TLV3012-Q1)

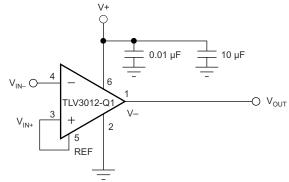
The TLV3012-Q1 has a "Push-Pull" output capable of both sinking and sourcing current. The push-pull output stage is optimal for reduced power budget applications by eliminating the need for a pull-up resistor and features no shoot-through current. Do not tie push-pull outputs together.

8.4.3 Voltage Reference

The integrated 1.242-V voltage reference offers low 100-ppm/°C (maximum) drift provided on a seporate output pin that allows use of external dividers or to provide a reference voltage for other external circuitry. The reference is stable with up to a 10-nF capacitive load and can sink or source up to 500µA (typical) of output current.

9 Application and Implementation

Note


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The TLV301x-Q1 comparator family with on-chip 1.242-V series reference with the choice of either open-drain or push-pull output stages.

A typical supply current of 2.8 μ A and small packaging combine with 1.8-V supply requirements to make the TLV301x devices optimal for battery and portable designs.

Figure 9-1 shows the typical connections for the TLV3012-Q1 device.

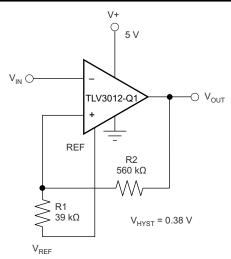

Copyright © 2016, Texas Instruments Incorporated

Figure 9-1. Basic Connections of the TLV3012-Q1

9.1.1 External Hysteresis

Comparator inputs have no noise immunity within the range of specified offset voltage (± 12 mV). For noisy input signals, the comparator output may display multiple switching as input signals move through the switching threshold. The typical comparator threshold of the TLV3012-Q1 device is ± 0.5 mV. To prevent multiple switching within the comparator threshold of the TLV3012-Q1 device, external hysteresis may be added by connecting a small amount of feedback to the positive input. Figure 9-2 shows a typical topology used to introduce hysteresis, described by Equation 1.

$$V_{HYST} = \frac{V + \times R1}{R1 + R2} \tag{1}$$

Copyright © 2016, Texas Instruments Incorporated

Figure 9-2. Adding Hysteresis

The V_{HYST} voltage sets the value of the transition voltage required to switch the comparator output by increasing the threshold region, thereby reducing sensitivity to noise.

9.2 Typical Application

9.2.1 Under-Voltage Detection

Under-voltage detection is frequently required to alert the system that a battery voltage has dropped below the usable voltage level. Figure 23 shows a simple under-voltage detection circuit using the TLV3012-Q1 which is configured as a non-inverting comparator with the integrated 1.242 V reference is externally connected to the inverting input pin (IN-).

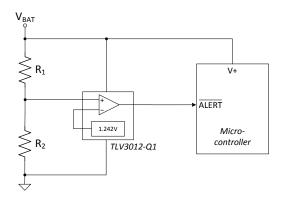


Figure 9-3. Under-Voltage Detection

9.2.1.1 Design Requirements

For this design, follow these design requirements:

- Operate from power supply that powers the microcontroller.
- Under-voltage alert is active low.
- Logic low output when V_{BAT} is less than 2.0V.

9.2.1.2 Detailed Design Procedure

Configure the circuit as shown in Figure 9-3. Connect (V+) to V_{BAT} which also powers the microcontroller. Resistors R_1 and R_2 create the under-voltage alert level of 2.0 V. When the battery voltage sags down to 2.0 V, the resistor divider voltage crosses V_{REF} , the 1.242 V reference threshold of the TLV3012-Q1. This causes the comparator output to transition from a logic high to a logic low. The push-pull output of the TLV3012-Q1

is selected since the comparator operating voltage is shared with the microcontroller which is receiving the under-voltage alert signal.

Equation 2 is derived from the analysis of Figure 9-3.

$$V_{REF} = \frac{R_2}{R_1 + R_2} \times V_{BAT}$$
(2)

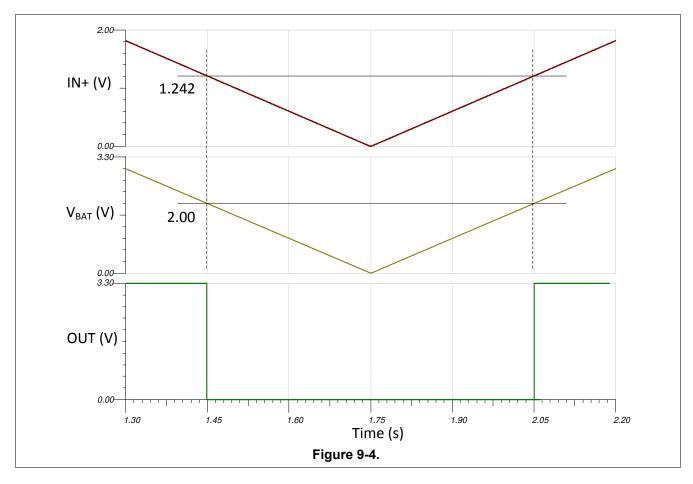
where

- R₁ and R₂ are the resistor values for the resistor divider connected to IN+
- V_{BAT} is the voltage source that is being monitored for an undervoltage condition.
- V_{REF} is the falling edge threshold where the comparator output changes state from high to low

Rearranging Equation 2 and solving for R₁ yields Equation 3.

$$R_1 = \frac{(V_{BAT} - V_{REF})}{V_{REF}} \times R_2$$
(3)

For the specific undervoltage detection of 2.0 V using the TLV3012-Q1, the following results are calculated.


$$R_1 = \frac{(2.0 - 1.242)}{1.242} \times 1M = 610 \text{ k}\Omega$$
(4)

where

- R₂ is set to 1 MΩ
- V_{BAT} is set to 2.0 V
- V_{RFF} is set to1.242 V

Choose R_{TOTAL} ($R_1 + R_2$) such that the current through the divider is at least 100 times higher than the input bias current (I_{BIAS}). The resistors can have high values to minimize current consumption in the circuit without adding significant error to the resistive divider.

9.2.1.3 Application Curve

9.3 System Examples

9.3.1 Power-On Reset

The reset circuit shown in Figure 9-5 provides a time-delayed release of reset to the MSP430™ microcontroller. Operation of the circuit is based on a stabilization time constant of the supply voltage, rather than on a predetermined voltage value. The negative input is a reference voltage created by the internal voltage reference. The positive input is an RC circuit that provides a power-up delay. When power is applied, the output of the comparator is low, holding the processor in the reset condition. Only after allowing time for the supply voltage to stabilize does the positive input of the comparator become higher than the negative input, resulting in a high output state, releasing the processor for operation. The stabilization time required for the supply voltage is adjustable by the selection of the RC component values. Use of a lower-valued resistor in this portion of the circuit does not increase current consumption, because no current flows through the RC circuit after the supply has stabilized.

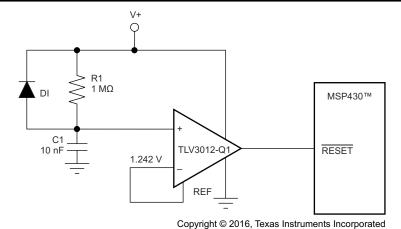


Figure 9-5. TLV3012-Q1 Configured as Power-Up Reset Circuit for the MSP430™ Microcontroller

The reset delay needed depends on the power-up characteristics of the system power supply. R_1 and C_1 are selected to allow enough time for the power supply to stabilize. D_1 provides rapid reset if power is lost. In this example, the $R_1 \times C_1$ time constant is 10 ms.

9.3.2 Relaxation Oscillator

The TLV3012-Q1 device can be configured as a relaxation oscillator to provide a simple and inexpensive clock output (see Figure 9-6). The capacitor is charged at a rate of T = 0.69RC and discharges at a rate of 0.69RC. Therefore, the period is T = 1.38RC. R_1 may be a different value than R_2 .

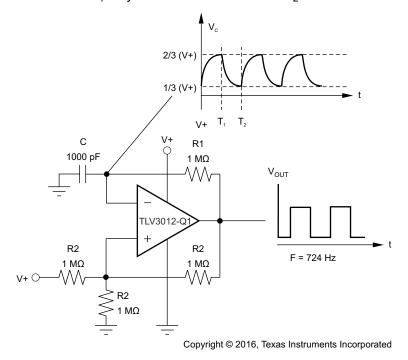


Figure 9-6. TLV3012-Q1 Configured as Relaxation Oscillator

9.4 Power Supply Recommendations

The TLV3012-Q1 has a recommended operating voltage range (V_S) of 1.8 V to 5.5 V. V_S is defined as (V+) – (V-). Therefore, the supply voltages used to create V_S can be single-ended or bipolar. For example, single-ended supply voltages of 5 V and 0 V and bipolar supply voltages of +2.5 V and -2.5 V create comparable operating voltages for V_S . However, when bipolar supply voltages are used, it is important to realize that the reference

www.ti.com

(REF) and logic low level of the comparator output is referenced to (V-). Output capacitive loading and output toggle rate will cause the average supply current to rise over the quiescent current in the EC Table.

9.5 Layout

9.5.1 Layout Guidelines

To minimize supply noise, power supplies should be capacitively decoupled by a 0.1-µF ceramic capacitor. Comparators are sensitive to input noise and precautions such as proper grounding (use of ground plane), supply bypassing, and guarding of high-impedance nodes minimize the effects of noise and help to ensure specified performance.

9.5.2 Layout Example

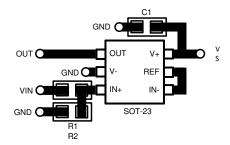


Figure 9-7. Layout Example

10 Device and Documentation Support

10.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.3 Trademarks

MSP430[™] is a trademark of Texas Instruments.

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

www.ti.com 10-Aug-2022

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
TLV3011AQDBVRQ1	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2Q7F	Samples
TLV3012AQDBVRQ1	ACTIVE	SOT-23	DBV	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2Q8F	Samples
TLV3012AQDCKRQ1	ACTIVE	SC70	DCK	6	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	BPF	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

www.ti.com 10-Aug-2022

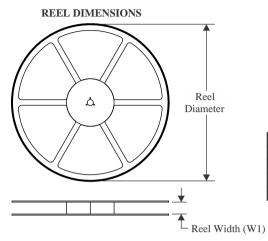
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

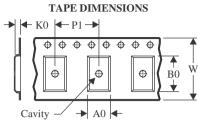
OTHER QUALIFIED VERSIONS OF TLV3011-Q1, TLV3012-Q1:

• Catalog : TLV3011, TLV3012

● Enhanced Product : TLV3011-EP

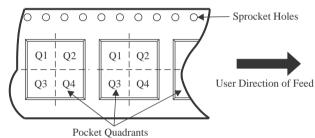
NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

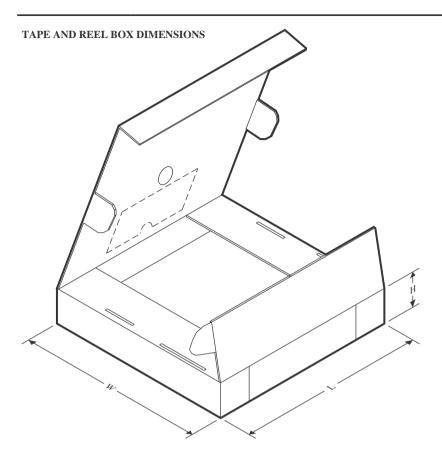

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 13-Sep-2022


TAPE AND REEL INFORMATION

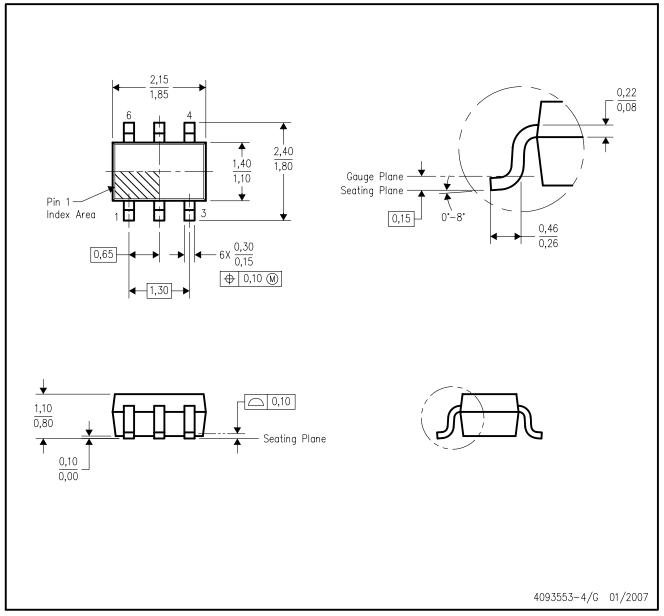
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV3012AQDBVRQ1	SOT-23	DBV	6	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
TLV3012AQDCKRQ1	SC70	DCK	6	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3

www.ti.com 13-Sep-2022

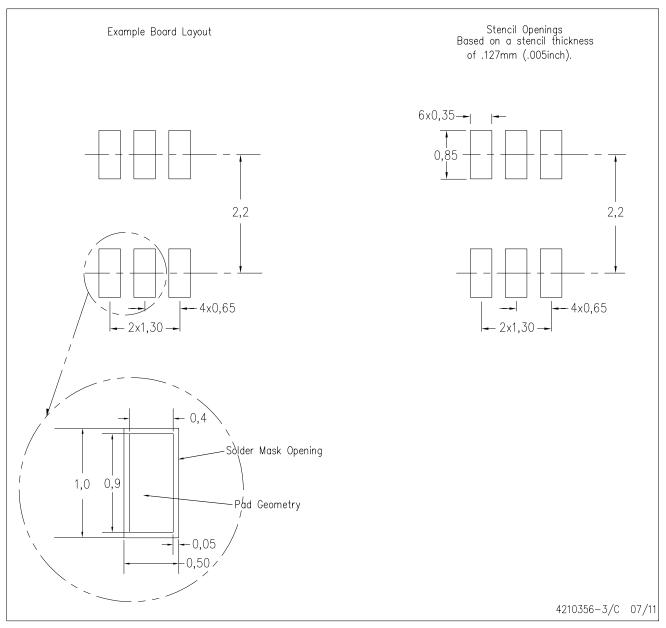


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV3012AQDBVRQ1	SOT-23	DBV	6	3000	210.0	185.0	35.0
TLV3012AQDCKRQ1	SC70	DCK	6	3000	200.0	183.0	25.0

DCK (R-PDSO-G6)

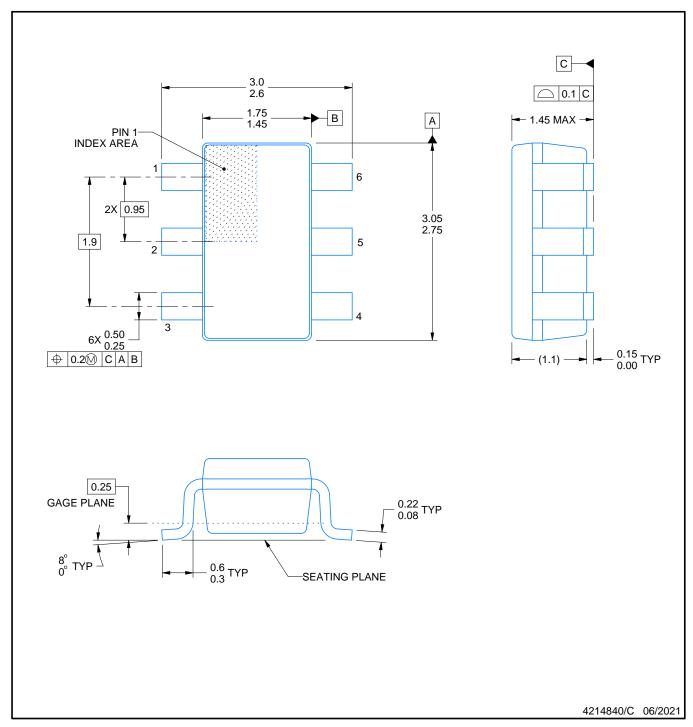
PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.

DCK (R-PDSO-G6)

PLASTIC SMALL OUTLINE

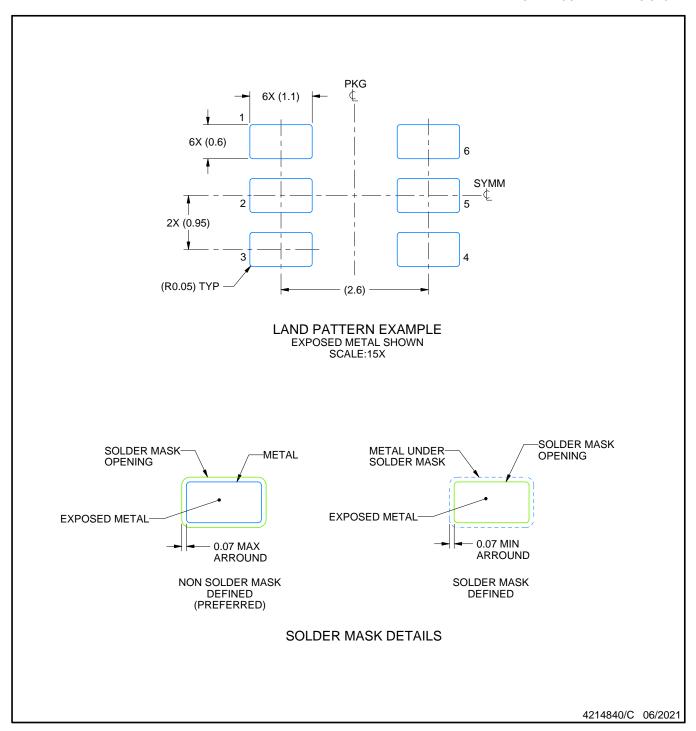

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

SMALL OUTLINE TRANSISTOR

NOTES:

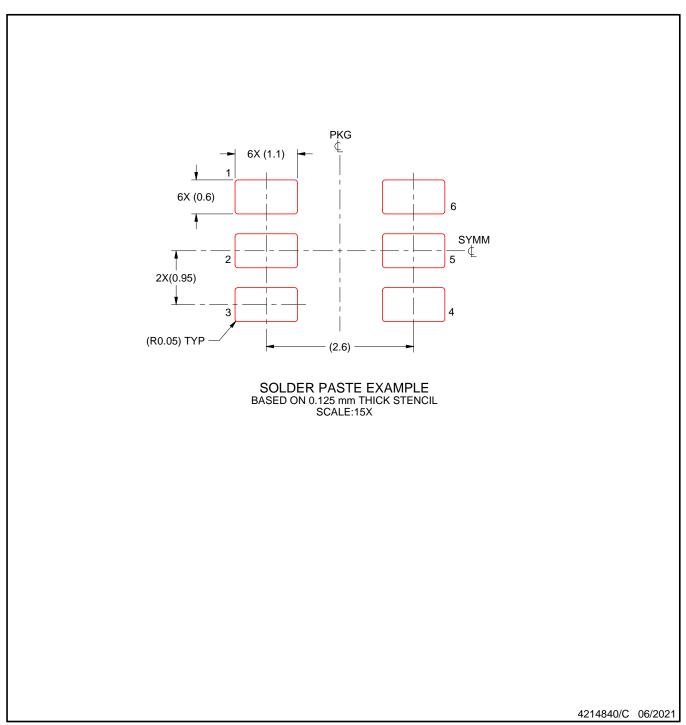
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. 5. Refernce JEDEC MO-178.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated