[.WMini-Circuits

Absorptive RF Switch with internal driver Single Supply Voltage, +2.7 V to +5.5 V

THE BIG DEAL

- High Isolation, 69 dB at 1.0 GHz
- Low insertion loss, 0.95 dB typ. at 1 GHz
- High Input IP3, +65 dBm
- Fast switching, 300 ns typ.
- Tiny Size, $4 \times 4 \mathrm{~mm}$
- Immune to latch-up

CASE STYLE: DG983-3
Generic photo used for illustration purposes only
+RoHS Compliant
The +Suffix identifies RoHS Compliance.
See our website for methodologies and qualifications

APPLICATIONS

- Defense
- Test and Measurements
- Switch matrices

PRODUCT OVERVIEW

Mini-Circuits' HSWA2-63DR+ is a MMIC SPDT absorptive switch with an internal driver designed for wideband operation from 100 MHz to 6.0 GHz supporting many applications requiring high performance across a wide frequency range. This model provides excellent isolation, fast switching speed and high linearity in a tiny $4 \times 4 \mathrm{~mm} 20$-Lead MCLP package. Produced using a unique CMOS process on silicon, it offers the performance of GaAs with the advantages of conventional CMOS devices. HSWA2-63DR+ provides a high level of ESD protection and excellent repeatability.

KEY FEATURES

Feature	
Wideband, 100 MHz to 6.0 GHz Usable over 1 kHz to 6 GHz	Advantages
Absorptive switch	One model can be used in many applications, saving component count. Also ideal for wideband applications such as military and instrumentation. With lower input power it can operate over 1kHz to 6 GHz covering even wider applica- tions
High Isolation: 71 dB at 1000 MHz 48 dB at 6000 MHz	In the off condition, RF output ports which are not switched ON are terminated into 50Ω. This enables proper imped- ance termination of the circuitry following the RF output ports, preventing any unintended action such as oscillation.
High linearity, +65 dBm IIP3	High isolation significantly reduces leakage of power into OFF ports.
Immune to Latch-up	High linearity minimizes unwanted intermodulation products which are difficult or impossible to filter in multi-carrier environments such as CATV, or in the presence of strong interfering signal from adjacent circuitry or received by antenna.
Tiny size, $4 \times 4 \mathrm{~mm}$ MCLP package	Unlike conventional CMOS devices, HSWA is immune to latch-up
Tiny footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent	
thermal contact to the PCB.	

RF ELECTRICAL SPECIFICATIONS1, 100 MHZ - 6 GHZ , TAMB $=25^{\circ} \mathrm{C}$, VDD $=+3.0 \mathrm{~V}, 50 \mathrm{OHMS}$

Parameter	Condition (MHz)	Min.	Typ.	Max.	Units
Frequency range		100		6000	MHz
Insertion loss ${ }^{2}$	$\begin{gathered} 100-1000 \\ 1000-2000 \\ 2000-3000 \\ 3000-4000 \\ 4000-5000 \\ 5000-6000 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 0.95 \\ 0.95 \\ 1.0 \\ 1.15 \\ 1.25 \\ 1.60 \end{gathered}$	$\begin{gathered} 1.15 \\ 1.15 \\ 1.2 \\ 1.35 \\ 1.55 \\ 1.90 \end{gathered}$	dB
Isolation between Common port and RF1/RF2 Ports	$\begin{gathered} 100-1000 \\ 1000-2000 \\ 2000-3000 \\ 3000-4000 \\ 4000-5000 \\ 5000-6000 \end{gathered}$	$\begin{aligned} & 69 \\ & 65 \\ & 63 \\ & 62 \\ & 52 \\ & 44 \end{aligned}$	$\begin{aligned} & 71 \\ & 67 \\ & 68 \\ & 67 \\ & 57 \\ & 48 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	dB
Isolation between RF1 and RF2 Ports	$\begin{gathered} 100-1000 \\ 1000-2000 \\ 2000-3000 \\ 3000-4000 \\ 4000-5000 \\ 5000-6000 \end{gathered}$	$\begin{aligned} & 67 \\ & 63 \\ & 59 \\ & 60 \\ & 54 \\ & 44 \end{aligned}$	69 64 62 64 60 50	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	dB
Return loss (All Ports)	$\begin{gathered} 100-4000 \\ 4000-5000 \\ 5000-6000 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 13 \end{aligned}$	$-$	dB
Input IP2	100-6000	-	110	-	dBm
Input IP3	100-6000	60	65	-	dBm
1.0 dB Input compression ${ }^{3}$	100-6000	33	35	-	dBm
Thermal Resistance, junction-to-ambient			78		${ }^{\circ} \mathrm{C} / \mathrm{W}$

DC ELECTRICAL SPECIFICATIONS

Parameter	Min.	Typ.	Max.	Units
Supply voltage, V_{DD}	2.7		5.5	V
Supply current		120	200	$\mu \mathrm{~A}$
Control voltage Low	-0.3		0.6	V
Control voltage High	1.17		3.6	V
Control current		9	12	$\mu \mathrm{~A}$

Notes:

1. Tested on Mini-Circuits' test board TB-919+, using Agilent's N5230A
network analyzer (see Characterization test circuit, Fig.2).
2. Insertion loss values are de-embedded from test board loss.
3. Do not exceed RF input power as shown in Absolute Maximum Ratings table.

SWITCHING SPECIFICATIONS

Parameter	Condition	Min.	Typ.	Max.	Units
Switching time 50% control to 90/10\%RF	fctrl=1KHz VDD $=3 \mathrm{~V}$ Vctrl High=1.8V Vctrl Low=0V		300	400	nS
	Video feed-through		27		$\mathrm{mV}_{\text {p.p }}$
			67		nS
Rise/Fall time 10 to 90% or 90 to 10%					

MAXIMUM RATINGS ${ }^{4}$

Parameter	Ratings
Operating temperature	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {DD }}$, Supply voltage	-0.3 to 5.5 V
Voltage control	-0.3 V Min. 3.6 Max.
RF Input power, CW^{5}	+30 dBm
RF Power into output ports ${ }^{5}$	+20 dBm
Maximum Die Junction Temperature	$150^{\circ} \mathrm{C}$

4. Operation of this device above any of these conditions may cause permanent damage.
5. 100\% Duty Cycle, all band, 50Ω

TRUTH TABLE

Mode	State of Control Voltage Control 1	
RF COM-RF1 ON	HIGH	LOW
RF COM-RF2 ON	LOW	HIGH
ALL OFF	LOW	LOW
Unsupported	HIGH	HIGH

MMIC

SP2T RF Switch

HSWA2-63DR+

Absorptive RF Switch with internal driver

Single Supply Voltage, +2.7 V to +5.5 V

Function	Pad Number	Description
RF COM	8	RF Common/ SUM port*
RF1	3	RF out \#1/In port \#1*
RF2	13	RF out \#1/In port \#2*
Control 1	17	CMOS Control IN \#1
Control 2	16	CMOS Control IN \#2
VDD	20	Supply voltage
GND	$1,2,4,7,9,10-12$, $14,15,18,19$	Ground

* Must be held at OVDC. If required add DC blocking capacitors on these ports.

CHARACTERIZATION \& APPLICATION CIRCUIT

Figure 2. Block Diagram of test Circuit used for characterization
(DUT soldered on Mini-Circuits' TB-919+)
Note: Cblock is required only when DC is present on RF ports.

PRODUCT MARKING
H63DR

Performance Data	Data Table		
Swept Graphs		,	DG983-3 Plastic package, exposed paddle, termination finish=NiPdAu
:---			
Case Style			
Tape \& Reel Standard quantities available on reel			
Suggested Layout for PCB Design			
Evaluation Board			
Environmental Ratings			

ESD RATING

Human Body Model (HBM): Class 2 (Pass 2000V) in accordance with MIL-STD-883, Method 3015

MSL RATING

Moisture Sensitivity: MSL3 in accordance with IPC/JEDEC J-STD-O20D

MSL TEST FLOW CHART

NOTES

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

