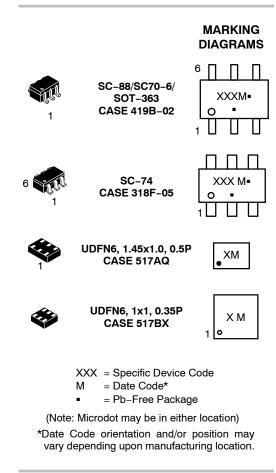
# **Configurable Multifunction** Gate

## NL7SZ57

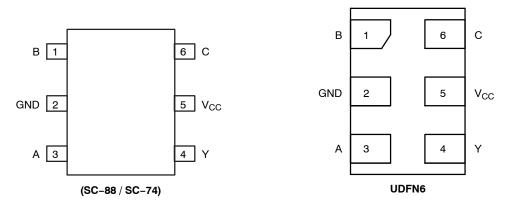
The NL7SZ57 is an advanced high-speed CMOS multifunction gate. The device allows the user to choose logic functions AND, OR, NAND, NOR, XNOR, INVERT and BUFFER. The device has Schmitt-trigger inputs, thereby enhancing noise immunity.


### Features

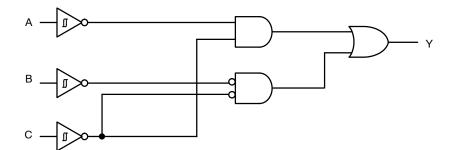
- Designed for 1.65 V to 5.5 V  $V_{CC}$  Operation
- 3.3 ns  $t_{PD}$  at  $V_{CC} = 5 V (Typ)$
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- I<sub>OFF</sub> Supports Partial Power Down Protection
- Sink 24 mA at 3.0 V
- Chip Complexity < 100 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant



## **ON Semiconductor®**


www.onsemi.com




## ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

## NL7SZ57









#### **PIN ASSIGNMENT**

| Pin | Function        |
|-----|-----------------|
| 1   | В               |
| 2   | GND             |
| 3   | А               |
| 4   | Y               |
| 5   | V <sub>CC</sub> |
| 6   | С               |

#### FUNCTION TABLE\*

|   | Input |   |   |  |
|---|-------|---|---|--|
| А | В     | С | Y |  |
| L | L     | L | Н |  |
| L | L     | Н | L |  |
| L | Н     | L | Н |  |
| L | Н     | Н | Н |  |
| Н | L     | L | L |  |
| Н | L     | Н | L |  |
| Н | Н     | L | L |  |
| Н | Н     | Н | Н |  |

\*To select a logic function, please refer to "Logic Configurations section".

## NL7SZ57

### LOGIC CONFIGURATIONS

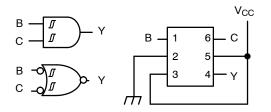



Figure 3. 2-Input AND (When A = "H")

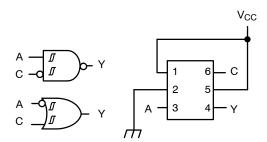



Figure 5. 2–Input NAND with Input C Inverted (When B = "H")

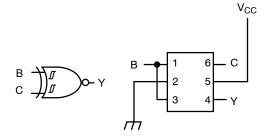



Figure 7. 2–Input XNOR (When A = B)

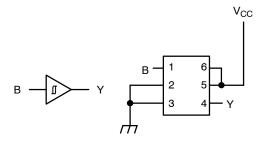



Figure 9. Buffer (When A = "L" and C = "H")

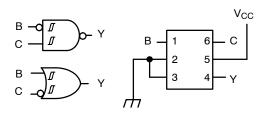



Figure 4. 2–Input NAND with input B inverted (When A = "L")

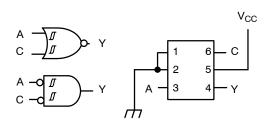



Figure 6. 2-Input NOR (When B = "L")

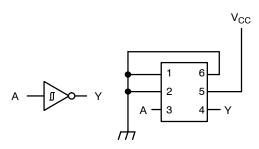



Figure 8. Inverter (When B = C = "L")

#### **MAXIMUM RATINGS**

| Symbol                              | Para                                     | neter                                                                                                 | Value                                                         | Unit |  |
|-------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|--|
| V <sub>CC</sub>                     | DC Supply Voltage                        | SC-88 (NLV)<br>SC-88, SC-74, UDFN6                                                                    | -0.5 to +7.0<br>-0.5 to +6.5                                  | V    |  |
| V <sub>IN</sub>                     | DC Input Voltage                         | SC-88 (NLV)<br>SC-88, SC-74, UDFN6                                                                    | -0.5 to +7.0<br>-0.5 to +6.5                                  | V    |  |
| V <sub>OUT</sub>                    | DC Output Voltage<br>SC-88 (NLV)         | Active-Mode (High or Low State)<br>Tri-State Mode (Note 1)<br>Power-Down Mode (V <sub>CC</sub> = 0 V) | -0.5 to V <sub>CC</sub> + 0.5<br>-0.5 to +7.0<br>-0.5 to +7.0 | V    |  |
|                                     | DC Output Voltage<br>SC-88, SC-74, UDFN6 | Active-Mode (High or Low State)<br>Tri-State Mode (Note 1)<br>Power-Down Mode (V <sub>CC</sub> = 0 V) | -0.5 to V <sub>CC</sub> + 0.5<br>-0.5 to +6.5<br>-0.5 to +6.5 | V    |  |
| I <sub>IK</sub>                     | DC Input Diode Current                   | V <sub>IN</sub> < GND                                                                                 | -50                                                           | mA   |  |
| Ι <sub>ΟΚ</sub>                     | DC Output Diode Current                  | DC Output Diode Current V <sub>OUT</sub> < GND                                                        |                                                               |      |  |
| I <sub>OUT</sub>                    | DC Output Source/Sink Current            | ±50                                                                                                   | mA                                                            |      |  |
| I <sub>CC</sub> or I <sub>GND</sub> | DC Supply Current per Supply Pin or Gr   | ±100                                                                                                  | mA                                                            |      |  |
| T <sub>STG</sub>                    | Storage Temperature Range                |                                                                                                       | -65 to +150                                                   | °C   |  |
| ΤL                                  | Lead Temperature, 1 mm from Case for     | 10 Secs                                                                                               | 260                                                           | °C   |  |
| TJ                                  | Junction Temperature Under Bias          |                                                                                                       | +150                                                          | °C   |  |
| $\theta_{JA}$                       | Thermal Resistance (Note 2)              | SC-88<br>SC-74<br>UDFN6                                                                               | 377<br>320<br>154                                             | °C/W |  |
| P <sub>D</sub>                      | Power Dissipation in Still Air           | SC-88<br>SC-74<br>UDFN6                                                                               | 332<br>390<br>812                                             | mW   |  |
| MSL                                 | Moisture Sensitivity                     |                                                                                                       | Level 1                                                       |      |  |
| F <sub>R</sub>                      | Flammability Rating Oxygen               | Oxygen Index: 28 to 34                                                                                | UL 94 V-0 @ 0.125 in                                          |      |  |
| V <sub>ESD</sub>                    | ESD Withstand Voltage (Note 3)           | Human Body Mode<br>Charged Device Model<br>(NLV) Charged Device Model                                 | >2000<br>>200<br>N/A                                          | V    |  |
| ILATCHUP                            | Latchup Performance (Note 4)             | (NLV)                                                                                                 | ±500<br>±100                                                  | mA   |  |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Applicable to devices with outputs that may be tri-stated.

 Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow per JESD51-7.
CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.4. Tested to EIA/JESD78 Class II.

#### **RECOMMENDED OPERATING CONDITIONS**

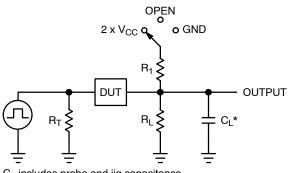
| Symbol                          | Parameter                      | Min                                                                                                                                                                                                              | Max                                          | Unit |
|---------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|
| V <sub>CC</sub>                 | Positive DC Supply Voltage     | 1.65                                                                                                                                                                                                             | 5.5                                          | V    |
| V <sub>IN</sub>                 | DC Input Voltage               | 0                                                                                                                                                                                                                | 5.5                                          | V    |
| V <sub>OUT</sub>                |                                | ode (High or Low State)0Gri-State Mode (Note 1)0Down Mode (V <sub>CC</sub> = 0 V)0                                                                                                                               | V <sub>CC</sub><br>5.5<br>5.5                | V    |
| T <sub>A</sub>                  | Operating Free-Air Temperature | -55                                                                                                                                                                                                              | +125                                         | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input Rise or Fall Rate        | $\begin{array}{c} V_{CC} = 1.65 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 4.5 \ V \ to \ 5.5 \ V \end{array} \begin{array}{c} 0 \\ 0 \\ \end{array}$ | No Limit<br>No Limit<br>No Limit<br>No Limit | nS/V |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

#### DC ELECTRICAL CHARACTERISTICS

| Symbol Parameter |                                      |                                                        | V <sub>cc</sub> | -                        | T <sub>A</sub> = 25°( | C    |                          | c ≤ T <sub>A</sub><br>85°C | -55°C ≤ T <sub>A</sub><br>≤ 125°C |      |    |
|------------------|--------------------------------------|--------------------------------------------------------|-----------------|--------------------------|-----------------------|------|--------------------------|----------------------------|-----------------------------------|------|----|
|                  | Condition                            | (V)                                                    | Min             | Тур                      | Max                   | Min  | Max                      | Min                        | Max                               | Unit |    |
| V <sub>T</sub> + | Positive Input                       |                                                        | 1.65            | -                        | -                     | 1.4  | -                        | 1.4                        | -                                 | 1.4  | V  |
|                  | Threshold Voltage                    |                                                        | 2.3             | -                        | -                     | 1.8  | -                        | 1.8                        | -                                 | 1.8  |    |
|                  |                                      |                                                        | 3.0             | -                        | -                     | 2.2  | -                        | 2.2                        | -                                 | 2.2  |    |
|                  |                                      |                                                        | 4.5             | -                        | -                     | 3.1  | -                        | 3.1                        | -                                 | 3.1  |    |
|                  |                                      |                                                        | 5.5             | -                        | -                     | 3.6  | -                        | 3.6                        | -                                 | 3.6  |    |
| V <sub>T</sub> - | Negative Input                       |                                                        | 1.65            | 0.2                      | -                     | -    | 0.2                      | -                          | 0.2                               | -    | V  |
|                  | Threshold Voltage                    |                                                        | 2.3             | 0.4                      | -                     | -    | 0.4                      | -                          | 0.4                               | -    |    |
|                  |                                      |                                                        | 3.0             | 0.6                      | -                     | -    | 0.6                      | -                          | 0.6                               | -    |    |
|                  |                                      |                                                        | 4.5             | 1.0                      | -                     | -    | 1.0                      | -                          | 1.0                               | -    |    |
|                  |                                      |                                                        | 5.5             | 1.2                      | -                     | -    | 1.2                      | -                          | 1.2                               | -    |    |
| V <sub>H</sub>   | Input Hysteresis                     |                                                        | 1.65            | 0.1                      | 0.48                  | 0.9  | 0.1                      | 0.9                        | 0.1                               | -    | V  |
|                  | Voltage                              |                                                        | 2.3             | 0.25                     | 0.75                  | 1.1  | 0.25                     | 1.1                        | 0.25                              | -    |    |
|                  |                                      |                                                        | 3               | 0.4                      | 0.93                  | 1.2  | 0.4                      | 1.2                        | 0.4                               | -    |    |
|                  |                                      |                                                        | 4.5             | 0.6                      | 1.2                   | 1.5  | 0.6                      | 1.5                        | 0.6                               | -    |    |
|                  |                                      |                                                        | 5.5             | 0.7                      | 1.4                   | 1.7  | 0.7                      | 1.7                        | 0.7                               | -    |    |
| V <sub>OH</sub>  | High-Level Output<br>Voltage         | I <sub>OH</sub> = –50 μA                               | 1.65<br>to 5.5  | V <sub>CC</sub><br>- 0.1 | V <sub>CC</sub>       | -    | V <sub>CC</sub><br>- 0.1 | -                          | V <sub>CC</sub><br>- 0.1          | -    | V  |
|                  | $V_{IN} = V_{IH} \text{ or } V_{IL}$ | I <sub>OH</sub> = -4 mA                                | 1.65            | 1.20                     | 1.52                  | -    | 1.20                     | -                          | 1.20                              | -    |    |
|                  |                                      | I <sub>OH</sub> = -8 mA                                | 2.3             | 1.9                      | 2.1                   | -    | 1.9                      | -                          | 1.9                               | -    |    |
|                  |                                      | I <sub>OH</sub> = -16 mA                               | 3               | 2.4                      | 2.7                   | -    | 2.4                      | -                          | 2.4                               | -    |    |
|                  |                                      | I <sub>OH</sub> = -24 mA                               | 3               | 2.3                      | 2.5                   | -    | 2.3                      | -                          | 2.3                               | -    |    |
|                  |                                      | I <sub>OH</sub> = -32 mA                               | 4.5             | 3.8                      | 4                     | -    | 3.8                      | -                          | 3.8                               | -    |    |
| V <sub>OL</sub>  | Low-Level Output<br>Voltage          | I <sub>OL</sub> = 100 μA                               | 1.65<br>to 5.5  | _                        | -                     | 0.1  | -                        | 0.1                        | -                                 | 0.1  | V  |
|                  | $V_{IN} = V_{IH} \text{ or } V_{IL}$ | I <sub>OL</sub> = 4 mA                                 | 1.65            | -                        | 0.08                  | 0.45 | -                        | 0.45                       | -                                 | 0.45 |    |
|                  |                                      | I <sub>OL</sub> = 8 mA                                 | 2.3             | -                        | 0.2                   | 0.3  | -                        | 0.3                        | -                                 | 0.4  |    |
|                  |                                      | I <sub>OL</sub> = 16 mA                                | 3               | -                        | 0.28                  | 0.4  | -                        | 0.4                        | -                                 | 0.5  |    |
|                  |                                      | I <sub>OL</sub> = 24 mA                                | 3               | -                        | 0.38                  | 0.55 | -                        | 0.55                       | -                                 | 0.55 |    |
|                  |                                      | I <sub>OL</sub> = 32 mA                                | 4.5             | -                        | 0.42                  | 0.55 | -                        | 0.55                       | -                                 | 0.65 |    |
| I <sub>IN</sub>  | Input Leakage<br>Current             | V <sub>IN</sub> = 5.5 V or<br>GND                      | 1.65<br>to 5.5  | _                        | -                     | +0.1 | -                        | +1.0                       | -                                 | +1.0 | μΑ |
| I <sub>OFF</sub> | Power Off<br>Leakage Current         | V <sub>IN</sub> = 5.5 V or<br>V <sub>OUT</sub> = 5.5 V | 0               | -                        | -                     | 1.0  | -                        | 10                         | -                                 | 10   | μA |
| ICC              | Quiescent Supply<br>Current          | V <sub>IN</sub> = 5.5 V or<br>GND                      | 5.5             | -                        | -                     | 1.0  | -                        | 10                         | -                                 | 10   | μA |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

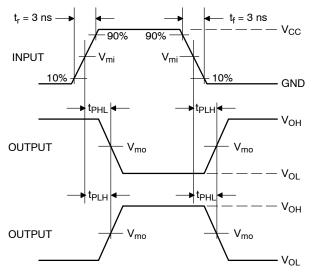

### AC ELECTRICAL CHARACTERISTICS

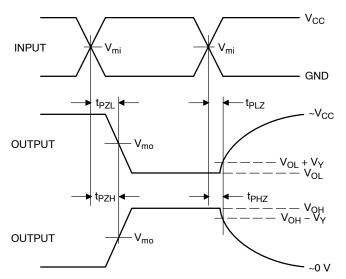
|                                                                                                     |                                                                        |                                     |                     | 1   | Γ <sub>A</sub> = 25°0 | •   |      | s ≤ T <sub>A</sub><br>5°C |      | ≤ T <sub>A</sub><br>25°C |      |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------|---------------------|-----|-----------------------|-----|------|---------------------------|------|--------------------------|------|
| Symbol                                                                                              | Parameter                                                              | Condition                           | V <sub>CC</sub> (V) | Min | Тур                   | Max | Min  | Max                       | Min  | Max                      | Unit |
| t <sub>PLH</sub> , Propagation Delay,<br>t <sub>PHL</sub> (A or B or C) to Y<br>(Figures 10 and 11) | $\begin{array}{l} R_{L} = 1 \ k\Omega, \\ C_{L} = 30 \ pF \end{array}$ | 1.65 to 1.95                        | -                   | 8.6 | 14.4                  | 1   | 14.4 | -                         | 14.4 | ns                       |      |
|                                                                                                     | R <sub>L</sub> = 500 Ω,<br>CL = 30 pF                                  | 2.3 to 2.7                          | -                   | 5.1 | 8.3                   | -   | 8.3  | -                         | 8.3  |                          |      |
|                                                                                                     |                                                                        | $R_L = 500 \Omega$ ,                | 3.0 to 3.6          | -   | 3.9                   | 6.3 | -    | 6.3                       | _    | 6.3                      |      |
|                                                                                                     |                                                                        | C <sub>L</sub> <sup>-</sup> = 50 pF | 4.5 to 5.5          | -   | 3.3                   | 5.1 | -    | 5.1                       | -    | 5.1                      |      |

#### **CAPACITIVE CHARACTERISTICS**

| Symbol           | Parameter                              | Condition                                                                                                 | Typical    | Unit |
|------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|------------|------|
| C <sub>IN</sub>  | Input Capacitance                      | $V_{CC}$ = 5.5 V, $V_{IN}$ = 0 V or $V_{CC}$                                                              | 2.5        | pF   |
| C <sub>OUT</sub> | Output Capacitance                     | $V_{CC}$ = 5.5 V, $V_{IN}$ = 0 V or $V_{CC}$                                                              | 4.0        | pF   |
| C <sub>PD</sub>  | Power Dissipation Capacitance (Note 5) | 10 MHz, $V_{CC}$ = 3.3 V, $V_{IN}$ = 0 V or $V_{CC}$ 10 MHz, $V_{CC}$ = 5.0 V, $V_{IN}$ = 0 V or $V_{CC}$ | 16<br>19.5 | pF   |

5.  $C_{PD}$  is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:  $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$ .  $C_{PD}$  is used to determine the no-load dynamic power consumption;  $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$ .





| Switch<br>Position | C <sub>L</sub> , pF                     | $R_L, \Omega$                                                                              | <b>R</b> <sub>1</sub> , Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|--------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Open               | See AC Characteristics Table            |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| $2 \times V_{CC}$  | 50                                      | 500                                                                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| GND                | 50                                      | 500                                                                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                    | Position<br>Open<br>2 x V <sub>CC</sub> | Position     See AC Character       Open     See AC Character       2 x V <sub>CC</sub> 50 | Position Image: Constraint of the set of the se |  |  |

X = Don't Care

 $C_L$  includes probe and jig capacitance  $R_T$  is  $Z_{OUT}$  of pulse generator (typically 50  $\Omega)$  f = 1 MHz

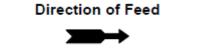
## Figure 10. Test Circuit

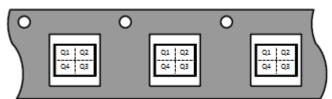




#### Figure 11. Switching Waveforms

|                     |                     | V <sub>m</sub>                      |                                                                           |                    |
|---------------------|---------------------|-------------------------------------|---------------------------------------------------------------------------|--------------------|
| V <sub>CC</sub> , V | V <sub>mi</sub> , V | t <sub>PLH</sub> , t <sub>PHL</sub> | t <sub>PZL</sub> , t <sub>PLZ</sub> , t <sub>PZH</sub> , t <sub>PHZ</sub> | V <sub>Y</sub> , V |
| 1.65 to 1.95        | V <sub>CC</sub> / 2 | V <sub>CC</sub> / 2                 | V <sub>CC</sub> / 2                                                       | 0.15               |
| 2.3 to 2.7          | V <sub>CC</sub> / 2 | V <sub>CC</sub> / 2                 | V <sub>CC</sub> / 2                                                       | 0.15               |
| 3.0 to 3.6          | V <sub>CC</sub> / 2 | V <sub>CC</sub> / 2                 | V <sub>CC</sub> / 2                                                       | 0.3                |
| 4.5 to 5.5          | V <sub>CC</sub> / 2 | V <sub>CC</sub> / 2                 | V <sub>CC</sub> / 2                                                       | 0.3                |

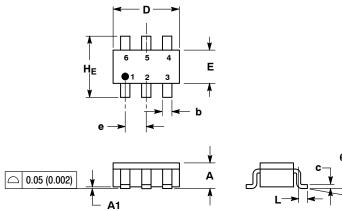

#### **ORDERING INFORMATION**


| Device                            | Package                              |                     |    | <b>Shipping</b> <sup>†</sup> |
|-----------------------------------|--------------------------------------|---------------------|----|------------------------------|
| NL7SZ57DFT2G                      | SC-88<br>(Pb-Free)                   | MN                  | Q4 | 3000 / Tape & Reel           |
| NLV7SZ57DFT2G*                    | SC–88<br>(Pb–Free)                   | MN                  | Q4 | 3000 / Tape & Reel           |
| NL7SZ57DBVT1G                     | SC–74<br>(Pb–Free)                   | AL                  | Q4 | 3000 / Tape & Reel           |
| NL7SZ57MU1TCG<br>(In Development) | UDFN6, 1.45 x 1.0, 0.5P<br>(Pb-Free) | TBD                 | Q4 | 3000 / Tape & Reel           |
| NL7SZ57MU3TCG<br>(In Development) | UDFN6, 1.0 x 1.0, 0.35P<br>(Pb-Free) | P (Rotated 270° CW) | Q4 | 3000 / Tape & Reel           |

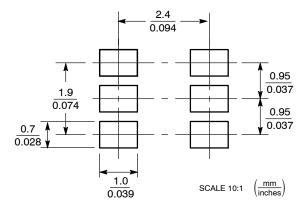
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. \*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP

Capable.

#### Pin 1 Orientation in Tape and Reel







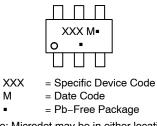

SCALE 2:1



#### **SOLDERING FOOTPRINT\***



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


NOTES:

SC-74 CASE 318F-05 **ISSUE N** 

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH
- CONTROLING DIMENSION: INCH. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM З.
- THICKNESS OF BASE MATERIAL. 4. 318F-01, -02, -03, -04 OBSOLETE. NEW STANDARD 318F-05.

|     | MILLIMETERS |      |      | INCHES |       |       |
|-----|-------------|------|------|--------|-------|-------|
| DIM | MIN         | NOM  | MAX  | MIN    | NOM   | MAX   |
| Α   | 0.90        | 1.00 | 1.10 | 0.035  | 0.039 | 0.043 |
| A1  | 0.01        | 0.06 | 0.10 | 0.001  | 0.002 | 0.004 |
| b   | 0.25        | 0.37 | 0.50 | 0.010  | 0.015 | 0.020 |
| С   | 0.10        | 0.18 | 0.26 | 0.004  | 0.007 | 0.010 |
| D   | 2.90        | 3.00 | 3.10 | 0.114  | 0.118 | 0.122 |
| Е   | 1.30        | 1.50 | 1.70 | 0.051  | 0.059 | 0.067 |
| e   | 0.85        | 0.95 | 1.05 | 0.034  | 0.037 | 0.041 |
| L   | 0.20        | 0.40 | 0.60 | 0.008  | 0.016 | 0.024 |
| HE  | 2.50        | 2.75 | 3.00 | 0.099  | 0.108 | 0.118 |
| θ   | 0°          | -    | 10°  | 0°     | -     | 10°   |

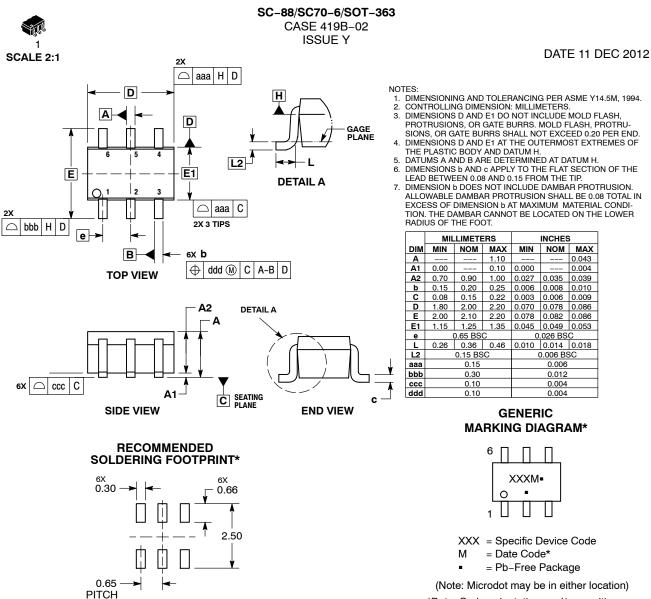
#### GENERIC **MARKING DIAGRAM\***



(Note: Microdot may be in either location)

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

| STYLE 1:        | STYLE 2:             | STYLE 3:         | STYLE 4:                     | STYLE 5:         | STYLE 6:       |
|-----------------|----------------------|------------------|------------------------------|------------------|----------------|
| PIN 1. CATHODE  | PIN 1. NO CONNECTION | PIN 1. EMITTER 1 | PIN 1. COLLECTOR 2           | PIN 1. CHANNEL 1 | PIN 1. CATHODE |
| 2. ANODE        | 2. COLLECTOR         | 2. BASE 1        | 2. EMITTER 1/EMITTER 2       | 2. ANODE         | 2. ANODE       |
| 3. CATHODE      | 3. EMITTER           | 3. COLLECTOR 2   | 3. COLLECTOR 1               | 3. CHANNEL 2     | 3. CATHODE     |
| 4. CATHODE      | 4. NO CONNECTION     | 4. EMITTER 2     | 4. EMITTER 3                 | 4. CHANNEL 3     | 4. CATHODE     |
| 5. ANODE        | 5. COLLECTOR         | 5. BASE 2        | 5. BASE 1/BASE 2/COLLECTOR 3 | 5. CATHODE       | 5. CATHODE     |
| 6. CATHODE      | 6. BASE              | 6. COLLECTOR 1   | 6. BASE 3                    | 6. CHANNEL 4     | 6. CATHODE     |
| STYLE 7:        | STYLE 8:             | STYLE 9:         | STYLE 10:                    | STYLE 11:        | E              |
| PIN 1. SOURCE 1 | PIN 1. EMITTER 1     | PIN 1. EMITTER 2 | PIN 1. ANODE/CATHODE         | PIN 1. EMITTER   |                |
| 2. GATE 1       | 2. BASE 2            | 2. BASE 2        | 2. BASE                      | 2. BASE          |                |
| 3. DRAIN 2      | 3. COLLECTOR 2       | 3. COLLECTOR 1   | 3. EMITTER                   | 3. ANODE/CATHOD  |                |
| 4. SOURCE 2     | 4. EMITTER 2         | 4. EMITTER 1     | 4. COLLECTOR                 | 4. ANODE         |                |
| 5. GATE 2       | 5. BASE 1            | 5. BASE 1        | 5. ANODE                     | 5. CATHODE       |                |
| 6. DRAIN 1      | 6. COLLECTOR 1       | 6. COLLECTOR 2   | 6. CATHODE                   | 6. COLLECTOR     |                |


| DOCUMENT NUMBER: | 98ASB42973B Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |  |             |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|--|
| DESCRIPTION:     | SC-74                                                                                                                                                                                           |  | PAGE 1 OF 1 |  |
|                  |                                                                                                                                                                                                 |  |             |  |

ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

0.043

0.004





- XXX = Specific Device Code

(Note: Microdot may be in either location)

\*Date Code orientation and/or position may vary depending upon manufacturing location.

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.



DIMENSIONS: MILLIMETERS

\*For additional information on our Pb-Free strategy and soldering

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42985B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SC-88/SC70-6/SOT-363 PAGE 1 OF 2 ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

#### SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE Y

#### DATE 11 DEC 2012

| STYLE 1:<br>PIN 1. EMITTER 2<br>2. BASE 2<br>3. COLLECTOR 1<br>4. EMITTER 1<br>5. BASE 1<br>6. COLLECTOR 2 | STYLE 2:<br>CANCELLED | STYLE 3:<br>CANCELLED                                                                                      | STYLE 4:<br>PIN 1. CATHODE<br>2. CATHODE<br>3. COLLECTOR<br>4. EMITTER<br>5. BASE<br>6. ANODE     | STYLE 5:<br>PIN 1. ANODE<br>2. ANODE<br>3. COLLECTOR<br>4. EMITTER<br>5. BASE<br>6. CATHODE               | STYLE 6:<br>PIN 1. ANODE 2<br>2. N/C<br>3. CATHODE 1<br>4. ANODE 1<br>5. N/C<br>6. CATHODE 2          |
|------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| STYLE 7:<br>PIN 1. SOURCE 2<br>2. DRAIN 2<br>3. GATE 1<br>4. SOURCE 1<br>5. DRAIN 1<br>6. GATE 2           | STYLE 8:<br>CANCELLED | STYLE 9:<br>PIN 1. EMITTER 2<br>2. EMITTER 1<br>3. COLLECTOR 1<br>4. BASE 1<br>5. BASE 2<br>6. COLLECTOR 2 | STYLE 10:<br>PIN 1. SOURCE 2<br>2. SOURCE 1<br>3. GATE 1<br>4. DRAIN 1<br>5. DRAIN 2<br>6. GATE 2 | STYLE 11:<br>PIN 1. CATHODE 2<br>2. CATHODE 2<br>3. ANODE 1<br>4. CATHODE 1<br>5. CATHODE 1<br>6. ANODE 2 | STYLE 12:<br>PIN 1. ANODE 2<br>2. ANODE 2<br>3. CATHODE 1<br>4. ANODE 1<br>5. ANODE 1<br>6. CATHODE 2 |
| STYLE 13:                                                                                                  | STYLE 14:             | STYLE 15:                                                                                                  | STYLE 16:                                                                                         | STYLE 17:                                                                                                 | STYLE 18:                                                                                             |
| PIN 1. ANODE                                                                                               | PIN 1. VREF           | PIN 1. ANODE 1                                                                                             | PIN 1. BASE 1                                                                                     | PIN 1. BASE 1                                                                                             | PIN 1. VIN1                                                                                           |
| 2. N/C                                                                                                     | 2. GND                | 2. ANODE 2                                                                                                 | 2. EMITTER 2                                                                                      | 2. EMITTER 1                                                                                              | 2. VCC                                                                                                |
| 3. COLLECTOR                                                                                               | 3. GND                | 3. ANODE 3                                                                                                 | 3. COLLECTOR 2                                                                                    | 3. COLLECTOR 2                                                                                            | 3. VOUT2                                                                                              |
| 4. EMITTER                                                                                                 | 4. IOUT               | 4. CATHODE 3                                                                                               | 4. BASE 2                                                                                         | 4. BASE 2                                                                                                 | 4. VIN2                                                                                               |
| 5. BASE                                                                                                    | 5. VEN                | 5. CATHODE 2                                                                                               | 5. EMITTER 1                                                                                      | 5. EMITTER 2                                                                                              | 5. GND                                                                                                |
| 6. CATHODE                                                                                                 | 6. VCC                | 6. CATHODE 1                                                                                               | 6. COLLECTOR 1                                                                                    | 6. COLLECTOR 1                                                                                            | 6. VOUT1                                                                                              |
| STYLE 19:                                                                                                  | STYLE 20:             | STYLE 21:                                                                                                  | STYLE 22:                                                                                         | STYLE 23:                                                                                                 | STYLE 24:                                                                                             |
| PIN 1. I OUT                                                                                               | PIN 1. COLLECTOR      | PIN 1. ANODE 1                                                                                             | PIN 1. D1 (i)                                                                                     | PIN 1. Vn                                                                                                 | PIN 1. CATHODE                                                                                        |
| 2. GND                                                                                                     | 2. COLLECTOR          | 2. N/C                                                                                                     | 2. GND                                                                                            | 2. CH1                                                                                                    | 2. ANODE                                                                                              |
| 3. GND                                                                                                     | 3. BASE               | 3. ANODE 2                                                                                                 | 3. D2 (i)                                                                                         | 3. Vp                                                                                                     | 3. CATHODE                                                                                            |
| 4. V CC                                                                                                    | 4. EMITTER            | 4. CATHODE 2                                                                                               | 4. D2 (c)                                                                                         | 4. N/C                                                                                                    | 4. CATHODE                                                                                            |
| 5. V EN                                                                                                    | 5. COLLECTOR          | 5. N/C                                                                                                     | 5. VBUS                                                                                           | 5. CH2                                                                                                    | 5. CATHODE                                                                                            |
| 6. V REF                                                                                                   | 6. COLLECTOR          | 6. CATHODE 1                                                                                               | 6. D1 (c)                                                                                         | 6. N/C                                                                                                    | 6. CATHODE                                                                                            |
| STYLE 25:                                                                                                  | STYLE 26:             | STYLE 27:                                                                                                  | STYLE 28:                                                                                         | STYLE 29:                                                                                                 | STYLE 30:                                                                                             |
| PIN 1. BASE 1                                                                                              | PIN 1. SOURCE 1       | PIN 1. BASE 2                                                                                              | PIN 1. DRAIN                                                                                      | PIN 1. ANODE                                                                                              | PIN 1. SOURCE 1                                                                                       |
| 2. CATHODE                                                                                                 | 2. GATE 1             | 2. BASE 1                                                                                                  | 2. DRAIN                                                                                          | 2. ANODE                                                                                                  | 2. DRAIN 2                                                                                            |
| 3. COLLECTOR 2                                                                                             | 3. DRAIN 2            | 3. COLLECTOR 1                                                                                             | 3. GATE                                                                                           | 3. COLLECTOR                                                                                              | 3. DRAIN 2                                                                                            |
| 4. BASE 2                                                                                                  | 4. SOURCE 2           | 4. EMITTER 1                                                                                               | 4. SOURCE                                                                                         | 4. EMITTER                                                                                                | 4. SOURCE 2                                                                                           |
| 5. EMITTER                                                                                                 | 5. GATE 2             | 5. EMITTER 2                                                                                               | 5. DRAIN                                                                                          | 5. BASE/ANODE                                                                                             | 5. GATE 1                                                                                             |
| 6. COLLECTOR 1                                                                                             | 6. DRAIN 1            | 6. COLLECTOR 2                                                                                             | 6. DRAIN                                                                                          | 6. CATHODE                                                                                                | 6. DRAIN 1                                                                                            |

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER:                                                                                                                                                                                                                                                                                                                              | 98ASB42985B          | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| DESCRIPTION:                                                                                                                                                                                                                                                                                                                                  | SC-88/SC70-6/SOT-363 |                                                                                                                                                                                     | PAGE 2 OF 2 |  |  |
| ON Semiconductor and unarts of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.<br>ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding |                      |                                                                                                                                                                                     |             |  |  |

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative